Cagatay Ceylan
İzmir Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cagatay Ceylan.
Journal of Agricultural and Food Chemistry | 2011
Derya Alkan; Levent Yurdaer Aydemir; Iskender Arcan; Hatice Yavuzdurmaz; Halil I. Atabay; Cagatay Ceylan; Ahmet Yemenicioğlu
In this study, antimicrobial films were developed against Campylobacter jejuni by incorporation of gallic acid (GA) into zein-based films. The zein and zein-wax composite films containing GA between 2.5 and 10 mg/cm(2) were effective on different C. jejuni strains in a concentration-dependent manner. Zein and zein-wax composite films showed different release profiles in distilled water but quite similar release profiles at solid agar medium. Depending on incorporated GA concentration, 60-80% of GA released from the films, while the remaining GA was bound or trapped by film matrix. The GA at 2.5 and 5 mg/cm(2) caused a considerable increase in elongation (57-280%) of all zein films and eliminated their classical flexibility problems. The zein-wax composite films were less flexible than zein films, but the films showed similar tensile strengths and Youngs modulus. Scanning electron microscopy indicated different morphologies of zein and zein-wax composite films. This study clearly showed the good potential of zein and GA to develop flexible antimicrobial films against C. jejuni.
Biomedicine & Pharmacotherapy | 2013
Yusuf Baran; Cagatay Ceylan; Aylin Camgoz
Imatinib is a first generation tyrosine kinase inhibitor, which is used for the treatment of chronic myeloid leukemia. However, resistance to imatinib is an important problem. Different mechanisms have been explained for imatinib resistance. In this study, we examined the roles of macromolecules in imatinib resistance in K562 cells at the molecular level using Fourier Transform Infrared (FT-IR) spectroscopy. An amount of 3 μM imatinib resistant cells were generated by our group and named as K562/IMA-3 cells. Changes in macromolecules in parental and resistant cells were studied by FT-IR spectroscopy. Imatinib resistance caused changes, which indicated decreases in the level of glycogen and increases in the membrane order. The amount of unsaturated lipids increased in the imatinib resistant cells indicating lipid peroxidation. Imatinib resistance caused changes in the lipid/protein ratio. The relative protein content increased with respect to nucleic acids indicating higher transcription and protein expression and structural/organizational changes in the nucleus were evident as revealed by frequency changes in the nucleic acid bands. Changes in the amide bands revealed changes in the proteome of the resistant cells. Protein secondary structural changes indicated that the antiparallel beta sheets structure increased, however the alpha helix structure, beta sheet structure, random coil structure and turns decreased in the resistant cells. These results indicate that the FT-IR technique provides a suitable method for analyzing drug resistance related structural changes in leukemia and other cancer types.
Technology in Cancer Research & Treatment | 2012
Cagatay Ceylan; Aylin Camgoz; Yusuf Baran
Nilotinib is a second generation tyrosine kinase inhibitor which is used in both first and second line treatment of chronic myeloid leukemia (CML). In the present work, the effects of nilotinib resistance on K562 cells were investigated at the molecular level using Fourier transform infrared (FT-IR) spectroscopy. Human K562 CML cells were exposed to step-wise increasing concentrations of nilotinib, and sub-clones of K562 cells resistant to 50 nM nilotinib were generated and referred to as K562/NIL-50 cells. Antiproliferative effects of nilotinib were determined by XTT cell proliferation assay. Changes in macromolecules in parental and resistant cells were studied by FT-IR spectroscopy. Nilotinib resistance caused significant changes which indicated increases in the level of glycogen and membrane/lipid order. The amount of unsaturated lipids increased in the nilotinib resistant cells indicating lipid peroxidation. The total amount of lipids did not change significantly but the relative proportion of cholesterol and triglycerides altered considerably. Moreover, the transcriptional status decreased but metabolic turn-over increased as revealed by the FT-IR spectra. In addition, changes in the proteome and structural changes in both proteins and the nucleus were observed in the K562/NIL-50 cells. Protein secondary structural analyses revealed that alpha helix structure and random coil structure decreased, however, anti-parallel beta sheet structure, beta sheet structure and turns structure increased. These results indicate that the FT-IR technique provides a method for analyzing drug resistance related structural changes in leukemia and other cancer types.
Journal of Colloid and Interface Science | 2012
Salih Okur; Cagatay Ceylan; Evren Çulcular
This study focuses on the humidity adsorption kinetics of an isopropanol-induced and pH-triggered bovine pancreatic trypsin gel (BPTG). The BPTG was adsorbed on a gold coated Quartz Crystal Microbalance (QCM) substrate with a thickness of 376 nm. The morphology of the film was characterized using Atomic Force Microscopy (AFM). QCM was used to investigate the humidity sensing properties of the BPTG film. The response of the humidity sensor was explained using the Langmuir model. The average values of adsorption and desorption rates between 11% RH (relative humidity) and 97% RH were calculated as 2482.5 M(-1) s(-1) and 0.02 s(-1), respectively. The equilibrium constant and average Gibbs Free Energy of humidity adsorption and desorption cycles were obtained as 133,000 and -11.8 kJ/mol, respectively.
Journal of Microbiological Methods | 2014
Pınar Kadiroğlu; Figen Korel; Cagatay Ceylan
Four different bacterial DNA extraction strategies and two different qPCR probe chemistries were studied for detection of Stapylococcus aureus from white cheeses. Method employing trypsin treatment followed by a commercial kit application and TaqMan probe-based qPCR was the most sensitive one detecting higher counts than standards in naturally contaminated samples.
Veterinary Microbiology | 2012
Cagatay Ceylan; Feride Severcan; Aykut Özkul; Mete Severcan; Faruk Bozoglu; Nusret Taheri
The effect of high hydrostatic pressure application on fetal bovine serum components and the model microorganism (Bovine Viral Diarrheavirus type 1 NADL strain) was studied at 132 and 220 MPa pressure for 5 min at 25°C. Protein secondary structures were found to be unaffected by an artificial neural network application on the amide I region for both untreated and HHP treated samples. FTIR spectroscopy study of both the HHP-treated and control samples revealed changes in the intensity of some bands in the finger-print region (1500-900 cm(-1)) originating mainly from lipids which are thought to result from changes in the lipoprotein structure. The virus strain lost its infectivity completely after 220 MPa HHP treatments. These results indicate that HHP can be successfully used for inactivation of pestiviruses while leaving structural and functional properties of serum and serum products unaffected.
Food Chemistry | 2014
Cagatay Ceylan; T. Tansel Tanrıkul; Hüseyin Özgener
Sparus aurata is one of the two most important cultured fish species in the Mediterranean region. The present work investigates the effects of culturing in S. aurata liver tissue at the molecular level using Fourier Transform Infrared (FTIR) spectroscopy. FTIR spectroscopy revealed dramatic differences between the wild and aquacultured fish liver cells, which mainly indicated that the level of glycogen increased in the aquacultured samples and the protein/lipid ratio decreased by 42.29% indicating that triglycerides and cholesterol esters increased and the protein content decreased in the aquacultured samples. The 15.99% increase in the level of unsaturation indicated elevated lipid peroxidation. Structural/organisational changes in the nucleic acids along with increased transcriptional status of the liver tissue cells were observed in the cultured fish tissue. All these results indicated that culturing induces significant changes in fish physiology. In addition FTIR spectroscopy is a promising method to monitor the physiological changes in fish physiology.
High Pressure Research | 2009
Cagatay Ceylan; Mete Severcan; Faruk Bozoglu; Feride Severcan
The objective of this study was to investigate the effects of high hydrostatic pressure (HHP) on the stability of red blood cells (RBCs) and platelets. Bovine blood cells (n=5) were treated with the pressure of 55, 110, 154 and 220 MPa at 25 °C for 5 min. Light microscopy, atomic force microscopy and flow cytometry studies revealed that RBCs were morphologically stable up until the 220 MPa pressure treatments, at which surface modifications were observed. The platelets were found to be less stable than RBCs. HHP application did not cause any significant change in the signal intensity, band area and frequency values of the infrared bands with the exception that a significant variation was observed in the area of the cholesterol band. No statistically significant variations were observed in the secondary structure elements due to HHP treatment according to the artificial neural network study based on the FTIR data.
Virus Research | 2009
Aykut Özkul; Arife Erturk; Elvin Caliskan; Fahriye Sarac; Cagatay Ceylan; Peter P. C. Mertens; Ozden Kabakli; Ender Dincer; Sirin G. Cizmeci
Tumor Biology | 2016
Melis Kartal Yandim; Cagatay Ceylan; Efe Elmas; Yusuf Baran