Faruk Bozoglu
Middle East Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Faruk Bozoglu.
Fems Immunology and Medical Microbiology | 2004
Faruk Bozoglu; Hami Alpas; Gönül Kaletunç
Bacteria are expected to be injured or killed by high hydrostatic pressure (HHP). This depends on pressure levels, species and strain of the microorganism and subsequent storage. Injured bacteria may be repaired which could affect the microbiological quality of foodstuffs with an important safety consideration especially in low acid food products. In this study two Gram-positive (Listeria monocytogenes CA and Staphylococcus aureus 485) and two Gram-negative (Escherichia coli O157:H7 933 and Salmonella enteritidis FDA) relatively pressure resistant strains of foodborne pathogens were pressurized at 350, 450 and 550 MPa in milk (pH 6.65) and stored at 4, 22 and 30 degrees C. The results of shelf life studies indicated two types of injury, I1 and I2, for all the pathogens studied. It is obvious that I2 type injury is a major injury and after its repair (I2 to I1), the cells can form colonies on non-selective but not on selective agar. The formation of colonies on both selective and non-selective agar occurs only after full recovery of injury (I1 to AC). The results presented in this study show that even if injured cells are not detected immediately after HHP treatment, I2 type injury could be potentially present in the food system. Therefore, it is imperative that shelf life studies must be conducted over a period of time for potential repair of I2 type injury either to detectable injury (I1) or to active cells (AC) to ascertain microbiological safety of low acid food products.
Biosensors and Bioelectronics | 2002
Fatma Nese Kok; Faruk Bozoglu; Vasif Hasirci
In this study, acetylcholinesterase and choline oxidase were co-immobilized on poly(2-hydroxyethyl methacrylate) membranes and the change in oxygen consumption upon aldicarb introduction was measured. Immobilization of the enzymes was achieved either by entrapment or by surface attachment via a hybrid immobilization method including epichlorohydrin and Cibacron Blue F36A activation. Immobilized enzymes had a long-storage stability (only 15% activity decrease in 2 months in wet storage and no activity loss in dry storage). Aldicarb detection studies showed that a linear working range of 10-500 and 10-250 ppb aldicarb could be achieved by entrapped and surface immobilized enzymes, respectively. Enzymes immobilized on membrane surfaces responded to aldicarb presence more quickly than entrapped enzymes. Aldicarb concentrations as low as 23 and 12 ppb could be detected by entrapped and surface immobilized enzymes, respectively, in 25 min.
World Journal of Microbiology & Biotechnology | 2000
Hami Alpas; Faruk Bozoglu
The objective of this study was to combine pressure (345 MPa) with heat (50 ∘C), and bacteriocins (5000 AU/ml sample) for a short time (5 min) for the inactivation of relatively pressure-resistant strains of four foodborne pathogens: Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella in pasteurized milk and orange juice. Without bacteriocin addition, 5.5 log-cycle reduction was obtained for S. aureus 485 in milk whereas more than 8 log-cycle reduction was achieved for all the other strains studied. After storage of samples for 24 h at 4 ∘C, S. aureus 765 also gave positive results on selective media, where no growth was observed for all the other micro-organisms assayed. Incubation of the same pressurized samples at 37 ∘C for 48 h showed growth of L. monocytogenes strains in addition to S. aureus strains, where still no growth was observed for E. coli O157:H7 and Salmonella strains in their respective selective media. For orange juice samples, more than 8 log-cycle reduction was achieved for all the bacterial species studied. No growth was seen for these species on their respective selective media agar plates after storage at 4 ∘C for 24 h and at 37 ∘C for 48 h. When a bacteriocin-based biopreservative (BP1) was combined with pressurization, more than 8 log-cycle reduction in cell population of the resistant strains of S. aureus and L. monocytogenes were achieved in milk after pressurization. Milk samples were stored at 25 ∘C up to 30 days to test the effect of treatment and samples showed no growth whereas all the controls were positive.
Applied and Environmental Microbiology | 2004
Gönül Kaletunç; Jaesung Lee; Hami Alpas; Faruk Bozoglu
ABSTRACT Scanning electron microcopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) were used to evaluate structural changes in Leuconostoc mesenteroides cells as a function of high-hydrostatic-pressure treatment. This bacterium usually grows in chains of cells, which were increasingly dechained at elevated pressures. High-pressure treatments at 250 and 500 MPa also caused changes in the external surface and internal structure of cells. Dechaining and blister formation on the surface of cells increased with pressure, as observed in SEM micrographs. TEM studies showed that cytoplasmic components of the cells were affected by high-pressure treatment. DSC studies of whole cells showed increasing denaturation of ribosomes with pressure, in keeping with dense compacted regions in the cytoplasm of pressure-treated cells observed in TEM micrographs. Apparent reduction of intact ribosomes observed in DSC thermograms was related to the reduction in number of viable cells. The results indicate that inactivation of L. mesenteroides cells is mainly due to ribosomal denaturation observed as a reduction of the corresponding peak in DSC thermograms and condensed interior regions of cytoplasm in TEM micrographs.
Lwt - Food Science and Technology | 2003
Z. Hicsasmaz; Y Yazgan; Faruk Bozoglu; Z Katnas
Abstract Effect of polydextrose-substitution on the cell structure of the high-ratio cake system was investigated in terms of the bubble size distribution and foam drainage time of the cake batter, and the cake height, true and bulk densities, porosity, cell size and shape distributions of the cake crumb. Sugar-replacement levels were 0%, 25%, 50%, 75%, and 100% of the sugar content of the conventional high-ratio cake formulation. Polydextrose-substitution resulted in a uniform bubble size distribution within the cake batter. Bubble size distribution was similar to that of the conventional high-ratio cake even at the full-replacement level. Polydextrose-substitution resulted in a significant decrease in foam drainage time above the 50% sugar-replacement level. Increase in polydextrose-substitution affected expansion properties significantly by favoring the formation of small, sphere-like cells with diminishing interconnectivity. Polydextrose-substitution influenced crumb color significantly due to Maillard reactions. Cell structure of the crumb at the 25% sugar-replacement level was similar to that of the conventional high-ratio cake. A product similar to the high-ratio cake with respect to the batter characteristics, porosity, and cell size and shape distributions was obtained at the 25% sugar-replacement level resulting in 18.75% calorie reduction based on the sugar content of the conventional formulation.
Applied Spectroscopy | 2007
Sebnem Garip; Faruk Bozoglu; Feride Severcan
In the present study the characterization and differentiation of mesophilic and thermophilic bacteria were investigated by using Fourier transform infrared (FT-IR) spectroscopy. Our results showed significant differences between the FT-IR spectra of mesophilic and thermophilic bacteria. The protein-to-lipid ratio was significantly higher for thermophiles compared to mesophiles. The absorption intensity of the CH3 asymmetric stretching vibration was higher in thermophilic bacteria, indicating a change in the composition of the acyl chains. The higher intensity/area observed in the CH2 symmetric stretching mode at 2857 cm−1, and the CH2 bending vibration band at 1452 cm−1, indicated a higher amount of saturated lipids in thermophilic bacteria. The lipid C=O stretching vibration at 1739 cm−1, which was observed in the mesophilic group, was not observed clearly in the thermophilic group, indicating a difference in packing that is presumably due to the decreased proportion of unsaturated acyl chains in thermophilic bacteria. In addition, the carbonyl groups become hydrogen bonded and the cellular DNA content was lower in thermophilic bacteria. Moreover, in the 1000–400 cm−1 frequency region, the spectra of each bacterial species belonging to both the mesophilic and thermophilic bacterial groups, showed characteristic differences that were discriminated via dendrogram using cluster analysis. The curent study implies that FT-IR spectroscopy could be succesfuly applied for the rapid comparison of bacterial groups and species to establish either similarities or discrepencies, as well as to confirm biochemical or physiological characteristics.
World Journal of Microbiology & Biotechnology | 2003
Hami Alpas; L. Alma; Faruk Bozoglu
The objective of this study is to determine the effect of high hydrostatic pressure (HHP) on inactivation of Alicyclobacillus acidoterrestris vegetative cells in a model system (BAM broth) and in orange, apple and tomato juices. The shelf-life stability of pressurized juices is also studied. In general the viability loss was enhanced significantly as the level of pressure and temperature were increased (P < 0.05). 4.70 log cycle reduction was obtained after pressurization at 350 MPa at 50 °C for 20 min in BAM broth whereas thermal treatment at 50 °C for 20 min caused only 1.13 log cycle inactivation showing the effectiveness of HHP treatment on inactivation. The D values for pressure (350 MPa at 50 °C) and temperature (50 °C) treatments were 4.37 and 18.86 min in BAM broth, respectively. All juices were inoculated with A. acidoterrestris cells to 106 c.f.u./ml and were pressurized at 350 MPa at 50 °C for 20 min. More than 4 log cycle reduction was achieved in all juices studied immediately after pressurization. The pressurized juices were also stored up to 3 weeks at 30 °C and the viable cell numbers of A. acidoterrestris in orange, apple and tomato juices were 3.79, 2.59 and 2.27 log cycles, respectively after 3 weeks. This study has indicated that A. acidoterrestris vegetative cells can be killed by HHP at a predictable rate even at temperatures at which the microorganism would normally grow.
International Journal of Food Microbiology | 2003
Hami Alpas; Jaesung Lee; Faruk Bozoglu; Gönül Kaletunç
Differential scanning calorimetry (DSC) was used to evaluate the relative high hydrostatic pressure (HHP) resistances of bacterial strains from Staphylococcus aureus and Escherichia coli O157:H7 in vivo. The total apparent enthalpy change and thermal stability were two DSC parameters used to compare bacterial strains of untreated control and pressure-treated bacteria. DSC thermograms indicated that ribosomal denaturation appears to be a major factor in cell death by both thermal and high pressure treatments. However, the analysis of calorimetric data for control samples as well as pressure-treated samples clearly showed that the sensitivities of bacteria to various physical stresses can be different. While S. aureus 765 had a relatively higher resistance to thermal treatment in comparison to S. aureus 485, S. aureus 485 was determined to be more resistant to pressure than S. aureus 765. This information can be utilized in the design of processes specific to targeting certain cellular components by using different physical stresses.
Journal of Biomaterials Science-polymer Edition | 2001
Fatma Nese Kok; Faruk Bozoglu; Vasif Hasirci
In this study, acetylcholinesterase (AChE) and choline oxidase (ChO) were co-immobilized on poly(2-hydroxyethyl methacrylate) (pHEMA) membranes with the aim of using them in biosensor construction. pHEMA membranes were prepared with the addition of different salts in different HEMA : aqueous solution ratios and characterized in terms of porosity, thickness, permeability, and mechanical properties. Membranes prepared in the presence of SnCl4 were found to be superior in terms of porosity and permeability and were chosen as the immobilization matrix. Immobilization of the enzymes was achieved both by entrapment and surface attachment via epichlorohydrin (Epi) and Cibacron Blue F36A (CB) activation. The effect of immobilization on enzyme activity was evaluated by the comparison of Km and Vmax values for the free and immobilized bi-enzyme systems. The increase in Km was negligible (1.08-fold) for the bi-enzyme system upon immobilization on surface but was 2.12-fold upon entrapment. Specific activity of the free enzyme system was found to be 0.306 mVs-1 μg-1 ChO while it was 0.069 (4.43-fold decrease) for entrapped and 0.198 (1.54 fold decrease) for CB-Epi immobilized enzymes. The performance of immobilized enzymes in different buffer types, pH, and temperature conditions were evaluated. The best enzyme activity was obtained at pH 9.0. Activity of the enzymes was found to increase with increasing temperature (in the range 25-40°C).
Fems Immunology and Medical Microbiology | 2003
Hami Alpas; Faruk Bozoglu
The objective of this study was to compare high pressure resistance of Listeria monocytogenes strains at 25 degrees C and 50 degrees C at 350 MPa and to use high pressure (250 MPa and 350 MPa) at 30 degrees C and 40 degrees C for the inactivation of the relatively most pressure resistant strain inoculated in pasteurized apple, apricot, cherry and orange juices. L. monocytogenes CA was found to be the relatively most pressure resistant strain and increasing pressurization from 250 MPa to 350 MPa at 30 degrees C had an additional three to four log cycle reduction in viability, still leaving viable cells after 5 min. When 350 MPa at 40 degrees C for 5 min was applied more than eight log cycle reduction in cell population of all fruit juices was achieved. This study demonstrated that low temperature (40 degrees C) high pressure (350 MPa) treatment has the potential to inactivate relatively pressure resistant L. monocytogenes strains inoculated in different fruit juices within 5 min.