Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cagla Eroglu is active.

Publication


Featured researches published by Cagla Eroglu.


Cell | 2009

Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis

Cagla Eroglu; Nicola J. Allen; Michael W. Susman; Nancy A. O'Rourke; Chan Young Park; Engin Özkan; Chandrani Chakraborty; Sara B. Mulinyawe; Douglas S. Annis; Andrew D. Huberman; Eric M. Green; Jack Lawler; Ricardo E. Dolmetsch; K. Christopher Garcia; Stephen J. Smith; Z. David Luo; Arnon Rosenthal; Deane F. Mosher; Ben A. Barres

Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.


Nature | 2010

Regulation of synaptic connectivity by glia

Cagla Eroglu; Ben A. Barres

The human brain contains more than 100 trillion (1014) synaptic connections, which form all of its neural circuits. Neuroscientists have long been interested in how this complex synaptic web is weaved during development and remodelled during learning and disease. Recent studies have uncovered that glial cells are important regulators of synaptic connectivity. These cells are far more active than was previously thought and are powerful controllers of synapse formation, function, plasticity and elimination, both in health and disease. Understanding how signalling between glia and neurons regulates synaptic development will offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC

Hakan Kucukdereli; Nicola J. Allen; Anthony Lee; Ava Feng; M. Ilcim Ozlu; Laura M. Conatser; Chandrani Chakraborty; Gail Workman; Matthew S. Weaver; E. Helene Sage; Ben A. Barres; Cagla Eroglu

Astrocytes regulate synaptic connectivity in the CNS through secreted signals. Here we identified two astrocyte-secreted proteins, hevin and SPARC, as regulators of excitatory synaptogenesis in vitro and in vivo. Hevin induces the formation of synapses between cultured rat retinal ganglion cells. SPARC is not synaptogenic, but specifically antagonizes synaptogenic function of hevin. Hevin and SPARC are expressed by astrocytes in the superior colliculus, the synaptic target of retinal ganglion cells, concurrent with the excitatory synaptogenesis. Hevin-null mice had fewer excitatory synapses; conversely, SPARC-null mice had increased synaptic connections in the superior colliculus. Furthermore, we found that hevin is required for the structural maturation of the retinocollicular synapses. These results identify hevin as a positive and SPARC as a negative regulator of synapse formation and signify that, through regulation of relative levels of hevin and SPARC, astrocytes might control the formation, maturation, and plasticity of synapses in vivo.


Journal of Cerebral Blood Flow and Metabolism | 2008

Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke.

Jason Liauw; Stanley Hoang; Michael Choi; Cagla Eroglu; Matthew Choi; Guohua Sun; Matthew Percy; Benjamin Wildman-Tobriner; Tonya Bliss; Raphael Guzman; Ben A. Barres; Gary K. Steinberg

Thrombospondins 1 and 2 (TSP-1/2) belong to a family of extracellular glycoproteins with angiostatic and synaptogenic properties. Although TSP-1/2 have been postulated to drive the resolution of postischemic angiogenesis, their role in synaptic and functional recovery is unknown. We investigated whether TSP-1/2 are necessary for synaptic and motor recovery after stroke. Focal ischemia was induced in 8- to 12-week-old wild-type (WT) and TSP-1/2 knockout (KO) mice by unilateral occlusion of the distal middle cerebral artery and the common carotid artery (CCA). Thrombospondins 1 and 2 increased after stroke, with both TSP-1 and TSP-2 colocalizing mostly to astrocytes. Wild-type and TSP-1/2 KO mice were compared in angiogenesis, synaptic density, axonal sprouting, infarct size, and functional recovery at different time points after stroke. Using the tongue protrusion test of motor function, we observed that TSP-1/2 KO mice exhibited significant deficit in their ability to recover function (P < 0.05) compared with WT mice. No differences were found in infarct size and blood vessel density between the two groups after stroke. However, TSP-1/2 KO mice exhibited significant synaptic density and axonal sprouting deficits. Deficiency of TSP-1/2 leads to impaired recovery after stroke mainly due to the role of these proteins in synapse formation and axonal outgrowth.


Nature | 2013

Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4

Eric J. Benner; Dominic Luciano; Rebecca Jo; Khadar Abdi; Patricia Paez-Gonzalez; Huaxin Sheng; David S. Warner; Chunlei Liu; Cagla Eroglu; Chay T. Kuo

Postnatal/adult neural stem cells (NSCs) within the rodent subventricular/subependymal zone (SVZ/SEZ) generate Doublecortin (DCX)+ neuroblasts that migrate and integrate into olfactory bulb circuitry1,2. Continuous production of neuroblasts is controlled by SVZ microenvironmental niche3,4. It is generally believed that enhancing neurogenic activities of endogenous NSCs may provide needed therapeutic options for disease states and after brain injury. However, SVZ NSCs can also differentiate into astrocytes. It remains unclear if there are conditions that favor astrogenesis over neurogenesis in the SVZ niche, and if astrocytes produced there exhibit different properties from others in the brain. We have uncovered that SVZ-generated astrocytes express high levels of Thrombospondin-4 (Thbs4)5,6, a secreted homopentameric glycoprotein, in contrast to cortical astrocytes which are Thbs4low. We found that localized photothrombotic/ischemic cortical injury initiates a marked increase in Thbs4hi astrocyte production from the postnatal SVZ niche. Tamoxifen-inducible nestin-CreERtm4 lineage-tracing demonstrated that it is these SVZ-generated Thbs4hi astrocytes, and not DCX+ neuroblasts, that home-in on the injured cortex. This robust post-injury astrogenic response required SVZ Notch activation, modulated by Thbs4 via direct Notch1 receptor binding and endocytosis to activate downstream signals, including increased Nfia transcription factor expression important for glia production7. Consequently, Thbs4KO/KO animals showed severe defects in cortical injury-induced SVZ astrogenesis, instead producing cells expressing DCX from SVZ to the injury sites. These alterations in cellular responses resulted in abnormal glial scar formation after injury, and significantly increased microvascular hemorrhage into the brain parenchyma of Thbs4KO/KO animals. Taken together, these findings have significant implications for post-injury applications of endogenous and transplanted NSCs in the therapeutic setting, as well as disease states where Thbs family members play important roles8,9.Postnatal/adult neural stem cells (NSCs) within the rodent subventricular zone (SVZ; also called subependymal zone) generate doublecortin (Dcx)+ neuroblasts that migrate and integrate into olfactory bulb circuitry. Continuous production of neuroblasts is controlled by the SVZ microenvironmental niche. It is generally thought that enhancing the neurogenic activities of endogenous NSCs may provide needed therapeutic options for disease states and after brain injury. However, SVZ NSCs can also differentiate into astrocytes. It remains unclear whether there are conditions that favour astrogenesis over neurogenesis in the SVZ niche, and whether astrocytes produced there have different properties compared with astrocytes produced elsewhere in the brain. Here we show in mice that SVZ-generated astrocytes express high levels of thrombospondin 4 (Thbs4), a secreted homopentameric glycoprotein, in contrast to cortical astrocytes, which express low levels of Thbs4. We found that localized photothrombotic/ischaemic cortical injury initiates a marked increase in Thbs4hi astrocyte production from the postnatal SVZ niche. Tamoxifen-inducible nestin-creERtm4 lineage tracing demonstrated that it is these SVZ-generated Thbs4hi astrocytes, and not Dcx+ neuroblasts, that home-in on the injured cortex. This robust post-injury astrogenic response required SVZ Notch activation modulated by Thbs4 via direct Notch1 receptor binding and endocytosis to activate downstream signals, including increased Nfia transcription factor expression important for glia production. Consequently, Thbs4 homozygous knockout mice (Thbs4KO/KO) showed severe defects in cortical-injury-induced SVZ astrogenesis, instead producing cells expressing Dcx migrating from SVZ to the injury sites. These alterations in cellular responses resulted in abnormal glial scar formation after injury, and significantly increased microvascular haemorrhage into the brain parenchyma of Thbs4KO/KO mice. Taken together, these findings have important implications for post-injury applications of endogenous and transplanted NSCs in the therapeutic setting, as well as disease states where Thbs family members have important roles.


Cold Spring Harbor Perspectives in Biology | 2015

Astrocytes Control Synapse Formation, Function, and Elimination

Won-Suk Chung; Nicola J. Allen; Cagla Eroglu

Astrocytes, through their close associations with synapses, can monitor and alter synaptic function, thus actively controlling synaptic transmission in the adult brain. Besides their important role at adult synapses, in the last three decades a number of critical findings have highlighted the importance of astrocytes in the establishment of synaptic connectivity in the developing brain. In this article, we will review the key findings on astrocytic control of synapse formation, function, and elimination. First, we will summarize our current structural and functional understanding of astrocytes at the synapse. Then, we will discuss the cellular and molecular mechanisms through which developing and mature astrocytes instruct the formation, maturation, and refinement of synapses. Our aim is to provide an overview of astrocytes as important players in the establishment of a functional nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts

Cagla Eroglu; Britta Brügger; Felix T. Wieland; Irmgard Sinning

Metabotropic glutamate receptors (mGluRs) are responsible for the effects of glutamate in slow synaptic transmission, and are implicated in the regulation of many processes in the CNS. Recently, we have reported the expression and purification of a mGluR from Drosophila melanogaster (DmGluRA), a homologue of mammalian group II mGluRs. We have shown that ligand binding to reconstituted DmGluRA requires the presence of ergosterol in the liposomes [Eroglu, C., Cronet, P., Panneels, V., Beaufils, P. & Sinning, I. (2002) EMBO Rep. 3, 491-496]. Here we demonstrate that the receptor exists in different affinity states for glutamate, depending on the membrane composition. The receptor is in a high-affinity state when associated with sterol-rich lipid microdomains (rafts), and in a low-affinity state out of rafts. Enrichment of the membranes with cholesterol shifts the receptor into the high-affinity state, and induces its association with rafts. The receptor was crosslinked to photocholesterol. Our data suggest that sterol-rich lipid rafts act as positive allosteric regulators of DmGluRA.


Matrix Biology | 2012

Thrombospondins as key regulators of synaptogenesis in the central nervous system

W. Christopher Risher; Cagla Eroglu

Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSPs functions in CNS synaptogenesis.


Journal of Visualized Experiments | 2010

Quantifying Synapses: an Immunocytochemistry-based Assay to Quantify Synapse Number

Dominic Ippolito; Cagla Eroglu

One of the most important goals in neuroscience is to understand the molecular cues that instruct early stages of synapse formation. As such it has become imperative to develop objective approaches to quantify changes in synaptic connectivity. Starting from sample fixation, this protocol details how to quantify synapse number both in dissociated neuronal culture and in brain sections using immunocytochemistry. Using compartment-specific antibodies, we label presynaptic terminals as well as sites of postsynaptic specialization. We define synapses as points of colocalization between the signals generated by these markers. The number of these colocalizations is quantified using a plug in Puncta Analyzer (written by Bary Wark, available upon request, [email protected]) under the ImageJ analysis software platform. The synapse assay described in this protocol can be applied to any neural tissue or culture preparation for which you have selective pre- and postsynaptic markers. This synapse assay is a valuable tool that can be widely utilized in the study of synaptic development.


Cell | 2016

Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin

Sandeep K. Singh; Jeff A. Stogsdill; Nisha S. Pulimood; Hayley Dingsdale; Yong Ho Kim; Louis-Jan Pilaz; Il Hwan Kim; Alex C. Manhaes; Wandilson dos Santos Rodrigues; Arin Pamukcu; Eray Enustun; Zeynep Ertuz; Peter Scheiffele; Scott H. Soderling; Debra L. Silver; Ru-Rong Ji; Alexandre E. Medina; Cagla Eroglu

Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.

Collaboration


Dive into the Cagla Eroglu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola J. Allen

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. David Luo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guoping Feng

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge