Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guoping Feng is active.

Publication


Featured researches published by Guoping Feng.


Neuron | 2000

Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP

Guoping Feng; Rebecca H. Mellor; Michael Bernstein; Cynthia R. Keller-Peck; Quyen T. Nguyen; Mia Wallace; Jeanne M. Nerbonne; Jeff W. Lichtman; Joshua R. Sanes

We generated transgenic mice in which red, green, yellow, or cyan fluorescent proteins (together termed XFPs) were selectively expressed in neurons. All four XFPs labeled neurons in their entirety, including axons, nerve terminals, dendrites, and dendritic spines. Remarkably, each of 25 independently generated transgenic lines expressed XFP in a unique pattern, even though all incorporated identical regulatory elements (from the thyl gene). For example, all retinal ganglion cells or many cortical neurons were XFP positive in some lines, whereas only a few ganglion cells or only layer 5 cortical pyramids were labeled in others. In some lines, intense labeling of small neuronal subsets provided a Golgi-like vital stain. In double transgenic mice expressing two different XFPs, it was possible to differentially label 3 neuronal subsets in a single animal.


Nature | 2002

Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex

Joshua T. Trachtenberg; Brian E. Chen; Graham Knott; Guoping Feng; Joshua R. Sanes; Egbert Welker; Karel Svoboda

Do new synapses form in the adult cortex to support experience-dependent plasticity? To address this question, we repeatedly imaged individual pyramidal neurons in the mouse barrel cortex over periods of weeks. We found that, although dendritic structure is stable, some spines appear and disappear. Spine lifetimes vary greatly: stable spines, about 50% of the population, persist for at least a month, whereas the remainder are present for a few days or less. Serial-section electron microscopy of imaged dendritic segments revealed retrospectively that spine sprouting and retraction are associated with synapse formation and elimination. Experience-dependent plasticity of cortical receptive fields was accompanied by increased synapse turnover. Our measurements suggest that sensory experience drives the formation and elimination of synapses and that these changes might underlie adaptive remodelling of neural circuits.


Cell | 2014

CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling

Randall Jeffrey Platt; Sidi Chen; Yang Zhou; Michael J. Yim; Lukasz Swiech; Hannah R. Kempton; James E. Dahlman; Oren Parnas; Thomas Eisenhaure; Marko Jovanovic; Daniel B. Graham; Siddharth Jhunjhunwala; Matthias Heidenreich; Ramnik J. Xavier; Robert Langer; Daniel G. Anderson; Nir Hacohen; Aviv Regev; Guoping Feng; Phillip A. Sharp; Feng Zhang

CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.


Neuron | 2007

In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2

Benjamin R. Arenkiel; João Peça; Ian G. Davison; Catia Feliciano; Karl Deisseroth; George J Augustine; Michael D. Ehlers; Guoping Feng

Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we demonstrate a highly reproducible, light-dependent activation of neurons and precise control of firing frequency in vivo. To test the feasibility of mapping neural circuits, we exploited the circuitry formed between the olfactory bulb and the piriform cortex in anesthetized mice. In the olfactory bulb, individual mitral cells fired action potentials in response to light, and their firing rate was not influenced by costimulated glomeruli. However, in piriform cortex, the activity of target neurons increased as larger areas of the bulb were illuminated to recruit additional glomeruli. These results support a model of olfactory processing that is dependent upon mitral cell convergence and integration onto cortical cells. More broadly, these findings demonstrate a system for precise manipulation of neural activity in the intact mammalian brain with light and illustrate the use of ChR2 mice in exploring functional connectivity of complex neural circuits in vivo.


Nature | 2007

Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice.

Jeffrey M. Welch; Jing Lu; Ramona M. Rodriguiz; Nicholas C. Trotta; João Peça; Jin Dong Ding; Catia Feliciano; Meng Chen; J. Paige Adams; Jianhong Luo; Serena M. Dudek; Richard J. Weinberg; Nicole Calakos; William C. Wetsel; Guoping Feng

Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, although the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3; also known as DLGAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of Sapap3 exhibit increased anxiety and compulsive grooming behaviour leading to facial hair loss and skin lesions; both behaviours are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural and biochemical studies of Sapap3-mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of Sapap3 in the striatum rescues the synaptic and behavioural defects of Sapap3-mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviours.


Nature Protocols | 2012

A transcription activator-like effector toolbox for genome engineering

Neville E. Sanjana; Le Cong; Yang Zhou; Margaret Mary Cunniff; Guoping Feng; Feng Zhang

Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas sp. The DNA-binding domain of each TALE consists of tandem 34–amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within 1 week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using quantitative reverse-transcription PCR and Surveyor nuclease, respectively. The TALE toolbox described here will enable a broad range of biological applications.


The Journal of Neuroscience | 2006

Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits

Karl Deisseroth; Guoping Feng; Ania K. Majewska; Gero Miesenböck; Alice Ting; Mark J. Schnitzer

Emerging technologies from optics, genetics, and bioengineering are being combined for studies of intact neural circuits. The rapid progression of such interdisciplinary “optogenetic” approaches has expanded capabilities for optical imaging and genetic targeting of specific cell types. Here we explore key recent advances that unite optical and genetic approaches, focusing on promising techniques that either allow novel studies of neural dynamics and behavior or provide fresh perspectives on classic model systems.


Nature Methods | 2011

Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function

Shengli Zhao; Jonathan T. Ting; Hisham E. Atallah; Li Qiu; Jie Tan; Bernd Gloss; George J. Augustine; Karl Deisseroth; Minmin Luo; Ann M. Graybiel; Guoping Feng

Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2007

High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice

Haoyi Wang; João Peça; Masanori Matsuzaki; K. Matsuzaki; Jun Noguchi; Li Qiu; Dongqing Wang; Feng Zhang; Edward S. Boyden; Karl Deisseroth; Haruo Kasai; William C. Hall; Guoping Feng; George J Augustine

To permit rapid optical control of brain activity, we have engineered multiple lines of transgenic mice that express the light-activated cation channel Channelrhodopsin-2 (ChR2) in subsets of neurons. Illumination of ChR2-positive neurons in brain slices produced photocurrents that generated action potentials within milliseconds and with precisely timed latencies. The number of light-evoked action potentials could be controlled by varying either the amplitude or duration of illumination. Furthermore, the frequency of light-evoked action potentials could be precisely controlled up to 30 Hz. Photostimulation also could evoke synaptic transmission between neurons, and, by scanning with a small laser light spot, we were able to map the spatial distribution of synaptic circuits connecting neurons within living cerebral cortex. We conclude that ChR2 is a genetically based photostimulation technology that permits analysis of neural circuits with high spatial and temporal resolution in transgenic mammals.


Nature | 2003

Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition

Mario Buffelli; Robert W. Burgess; Guoping Feng; Corrinne G. Lobe; Jeff W. Lichtman; Joshua R. Sanes

Synaptic activity drives synaptic rearrangement in the vertebrate nervous system; indeed, this appears to be a main way in which experience shapes neural connectivity. One rearrangement that occurs in many parts of the nervous system during early postnatal life is a competitive process called ‘synapse elimination’. At the neuromuscular junction, where synapse elimination has been analysed in detail, muscle fibres are initially innervated by multiple axons, then all but one are withdrawn and the ‘winner’ enlarges. In support of the idea that synapse elimination is activity dependent, it is slowed or speeded when total neuromuscular activity is decreased or increased, respectively. However, most hypotheses about synaptic rearrangement postulate that change depends less on total activity than on the relative activity of the competitors. Intuitively, it seems that the input best able to excite its postsynaptic target would be most likely to win the competition, but some theories and results make other predictions. Here we use a genetic method to selectively inhibit neurotransmission from one of two inputs to a single target cell. We show that more powerful inputs are strongly favoured competitors during synapse elimination.

Collaboration


Dive into the Guoping Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan T. Ting

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Patricia Monteiro

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Zhou

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge