Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caitlin E. Mullarkey is active.

Publication


Featured researches published by Caitlin E. Mullarkey.


Clinical Infectious Diseases | 2012

Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans

Patrick J. Lillie; Tamara Berthoud; Timothy J. Powell; Teresa Lambe; Caitlin E. Mullarkey; Alexandra J. Spencer; Matthew Hamill; Yanchun Peng; Marie Eve Blais; Christopher J. A. Duncan; Susanne H. Sheehy; Tom Havelock; Saul N. Faust; Rob Lambkin Williams; Anthony Gilbert; John Oxford; Tao Dong; Adrian V. S. Hill; Sarah C. Gilbert

A single vaccination with MVA-NP+M1 boosts T-cell responses to conserved influenza antigens in humans. Protection against influenza disease and virus shedding was demonstrated in an influenza virus challenge study.


Molecular Therapy | 2014

Coadministration of Seasonal Influenza Vaccine and MVA-NP+M1 Simultaneously Achieves Potent Humoral and Cell-Mediated Responses

Richard D. Antrobus; Tamara Berthoud; Caitlin E. Mullarkey; Katja Hoschler; Lynda Coughlan; Maria Zambon; Adrian V. S. Hill; Sarah C. Gilbert

Current seasonal influenza vaccines have reduced immunogenicity and are of suboptimal efficacy in older adults. We have previously shown that the novel candidate vaccine MVA-NP+M1 is able to boost memory T cell responses in adults aged 50-85 years. Preclinical studies have demonstrated that viral vectored vaccines can act as adjuvants when coadministered with protein-based vaccines. We have conducted a phase I clinical trial to compare the coadministration of seasonal influenza vaccine and MVA-NP+M1 with seasonal influenza vaccine alone in adults aged 50 years and above. This combination of vaccines was safe and well tolerated. T cell responses to internal influenza proteins were boosted to significantly higher levels in the group receiving MVA-NP+M1 compared with the group receiving seasonal influenza vaccine alone. Rates of seroprotection and seroconversion against the three vaccine strains were similar in both groups; however, there was a significant increase in the geometric mean titer ratio for the H3N2 component of seasonal influenza vaccine in the coadministration group. While some vaccine combinations result in immune interference, the coadministration of MVA-NP+M1 alongside seasonal influenza vaccine is shown here to increase some influenza strain-specific antibody responses and boost memory T cells capable of recognizing a range of influenza A subtypes.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus

Wenqian He; Gene S. Tan; Caitlin E. Mullarkey; Amanda J. Lee; Mannie Man Wai Lam; Florian Krammer; Carole Henry; Patrick C. Wilson; Ali A. Ashkar; Peter Palese; Matthew S. Miller

Significance In addition to neutralizing antigens, antibodies are also capable of stimulating cellular responses through Fc–Fc receptor interactions. The type of response stimulated by these interactions is influenced by both the Fc receptor type expressed on the effector cell and the isotype of antibody to which it is bound. However, how antibody specificity influences Fc receptor functions, and how antibodies of different specificities interact to modulate these functions, remain unknown. Using influenza A virus as a model, we demonstrate that antibody specificity profoundly influences the induction of antibody-dependent cell-mediated cytotoxicity by effector cells. In addition, we show that interactions among antibodies that bind to discrete epitopes on the same antigen can influence the induction of Fc-dependent effector functions. The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.


Scientific Reports | 2013

Immunity Against Heterosubtypic Influenza Virus Induced By Adenovirus And MVA Expressing Nucleoprotein And Matrix Protein-1

Teresa Lambe; John Carey; Yuanyuan Li; Alexandra J. Spencer; Arjan van Laarhoven; Caitlin E. Mullarkey; Anto Vrdoljak; Anne C. Moore; Sarah C. Gilbert

Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8+ T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8+ T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact

Paul E. Leon; Wenqian He; Caitlin E. Mullarkey; Mark J. Bailey; Matthew S. Miller; Florian Krammer; Peter Palese; Gene S. Tan

Significance The mechanism of how antiviral antibodies induce Fc–FcγR effector functions remains to be fully elucidated. Although the ability to activate effector functions is attributed to antibody isotype, this does not fully address why identical isotypes have different capabilities to stimulate effector function. We show that antibodies that target the influenza virus hemagglutinin (HA) require a second intermolecular interaction to optimally activate effector cells. We demonstrate that the receptor-binding domain of the HA is required to bind to sialic acid expressed on the surface of effector cells to optimize effector cell activation. This finding provides a basic understanding of how an optimal antibody-dependent cell-mediated response against influenza virus is achieved and may allow for better vaccine design. Influenza virus strain-specific monoclonal antibodies (mAbs) provide protection independent of Fc gamma receptor (FcγR) engagement. In contrast, optimal in vivo protection achieved by broadly reactive mAbs requires Fc–FcγR engagement. Most strain-specific mAbs target the head domain of the viral hemagglutinin (HA), whereas broadly reactive mAbs typically recognize epitopes within the HA stalk. This observation has led to questions regarding the mechanism regulating the activation of Fc-dependent effector functions by broadly reactive antibodies. To dissect the molecular mechanism responsible for this dichotomy, we inserted the FLAG epitope into discrete locations on HAs. By characterizing the interactions of several FLAG-tagged HAs with a FLAG-specific antibody, we show that in addition to Fc–FcγR engagement mediated by the FLAG-specific antibody, a second intermolecular bridge between the receptor-binding region of the HA and sialic acid on effector cells is required for optimal activation. Inhibition of this second molecular bridge, through the use of an F(ab′)2 or the mutation of the sialic acid-binding site, renders the Fc–FcγR interaction unable to optimally activate effector cells. Our findings indicate that broadly reactive mAbs require two molecular contacts to possibly stabilize the immunologic synapse and potently induce antibody-dependent cell-mediated antiviral responses: (i) the interaction between the Fc of a mAb bound to HA with the FcγR of the effector cell and (ii) the interaction between the HA and its sialic acid receptor on the effector cell. This concept might be broadly applicable for protective antibody responses to viral pathogens that have suitable receptors on effector cells.


Mbio | 2016

Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner

Caitlin E. Mullarkey; Mark J. Bailey; Diana Golubeva; Gene S. Tan; Raffael Nachbagauer; Wenqian He; Kyle E. Novakowski; Dawn M. E. Bowdish; Matthew S. Miller; Peter Palese

ABSTRACT Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection in vivo. Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an in vitro assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection. IMPORTANCE The present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to neutralize, this class of antibodies has been shown to rely on Fc-Fc receptor interactions for optimal protection in vivo. Curiously, neutralizing antibodies that bind the HA head domain do not require such interactions. Our findings build on these previous observations and provide a more complete picture of the relationship between stalk-specific antibodies and cells of the innate immune compartment. Furthermore, our data suggest that the ability of HA stalk-specific antibodies to mediate Fc-Fc receptor engagement is epitope dependent. Overall, this work will inform the rational design of improved influenza virus vaccines and therapeutics. The present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to neutralize, this class of antibodies has been shown to rely on Fc-Fc receptor interactions for optimal protection in vivo. Curiously, neutralizing antibodies that bind the HA head domain do not require such interactions. Our findings build on these previous observations and provide a more complete picture of the relationship between stalk-specific antibodies and cells of the innate immune compartment. Furthermore, our data suggest that the ability of HA stalk-specific antibodies to mediate Fc-Fc receptor engagement is epitope dependent. Overall, this work will inform the rational design of improved influenza virus vaccines and therapeutics.


Journal of Virology | 2015

Broadly Neutralizing Anti-Influenza Virus Antibodies: Enhancement of Neutralizing Potency in Polyclonal Mixtures and IgA Backbones

Wenqian He; Caitlin E. Mullarkey; J. Andrew Duty; Thomas M. Moran; Peter Palese; Matthew S. Miller

ABSTRACT Current influenza virus vaccines rely upon the accurate prediction of circulating virus strains months in advance of the actual influenza season in order to allow time for vaccine manufacture. Unfortunately, mismatches occur frequently, and even when perfect matches are achieved, suboptimal vaccine efficacy leaves several high-risk populations vulnerable to infection. However, the recent discovery of broadly neutralizing antibodies that target the hemagglutinin (HA) stalk domain has renewed hope that the development of “universal” influenza virus vaccines may be within reach. Here, we examine the functions of influenza A virus hemagglutinin stalk-binding antibodies in an endogenous setting, i.e., as polyclonal preparations isolated from human sera. Relative to monoclonal antibodies that bind to the HA head domain, the neutralization potency of monoclonal stalk-binding antibodies was vastly inferior in vitro but was enhanced by several orders of magnitude in the polyclonal context. Furthermore, we demonstrated a surprising enhancement in IgA-mediated HA stalk neutralization relative to that achieved by antibodies of IgG isotypes. Mechanistically, this could be explained in two ways. Identical variable regions consistently neutralized virus more potently when in an IgA backbone compared to an IgG backbone. In addition, HA-specific memory B cells isolated from human peripheral blood were more likely to be stalk specific when secreting antibodies of IgA isotypes compared to those secreting IgG. Taken together, our data provide strong evidence that HA stalk-binding antibodies perform optimally when in a polyclonal context and that the targeted elicitation of HA stalk-specific IgA should be an important consideration during “universal” influenza virus vaccine design. IMPORTANCE Influenza viruses remain one of the most worrisome global public health threats due to their capacity to cause pandemics. While seasonal vaccines fail to protect against the emergence of pandemic strains, a new class of broadly neutralizing antibodies has been recently discovered and may be the key to developing a “universal” influenza virus vaccine. While much has been learned about the biology of these antibodies, most studies have focused only on monoclonal antibodies of IgG subtypes. However, the study of monoclonal antibodies often fails to capture the complexity of antibody functions that occur during natural polyclonal responses. Here, we provide the first detailed analyses of the biological activity of these antibodies in polyclonal contexts, comparing both IgG and IgA isotypes isolated from human donors. The striking differences observed in the functional properties of broadly neutralizing antibodies in polyclonal contexts will be essential for guiding design of “universal” influenza virus vaccines and therapeutics.


European Journal of Immunology | 2013

Improved adjuvanting of seasonal influenza vaccines: Preclinical studies of MVA‐NP+M1 coadministration with inactivated influenza vaccine

Caitlin E. Mullarkey; Amy Boyd; Arjan van Laarhoven; Eric A. Lefevre; B. Veronica Carr; Massimiliano Baratelli; Eleonora Molesti; Nigel J. Temperton; Colin Butter; Bryan Charleston; Teresa Lambe; Sarah C. Gilbert

Licensed seasonal influenza vaccines induce antibody (Ab) responses against influenza hemagglutinin (HA) that are limited in their ability to protect against different strains of influenza. Cytotoxic T lymphocytes recognizing the conserved internal nucleoprotein (NP) and matrix protein (M1) are capable of mediating a cross‐subtype immune response against influenza. Modified vaccinia Ankara (MVA) virus encoding NP and M1 (MVA‐NP+M1) is designed to boost preexisting T‐cell responses in adults in order to elicit a cross‐protective immune response. We examined the coadministration of HA protein formulations and candidate MVA‐NP+M1 influenza vaccines in murine, avian, and swine models. Ab responses postimmunization were measured by ELISA and pseudotype neutralization assays. Here, we demonstrate that MVA‐NP+M1 can act as an adjuvant enhancing Ab responses to HA while simultaneously inducing potent T‐cell responses to conserved internal Ags. We show that this regimen leads to the induction of cytophilic Ab isotypes that are capable of inhibiting hemagglutination and in the context of H5 exhibit cross‐clade neutralization. The simultaneous induction of T cells and Ab responses has the potential to improve seasonal vaccine performance and could be employed in pandemic situations.


Nature Communications | 2017

Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice

Wenqian He; Chi-Jene Chen; Caitlin E. Mullarkey; Jennifer R. Hamilton; Christine K. Wong; Paul E. Leon; Melissa B. Uccellini; Veronika Chromikova; Carole Henry; Kevin W. Hoffman; Jean K. Lim; Patrick C. Wilson; Matthew S. Miller; Florian Krammer; Peter Palese; Gene S. Tan

The aim of candidate universal influenza vaccines is to provide broad protection against influenza A and B viruses. Studies have demonstrated that broadly reactive antibodies require Fc–Fc gamma receptor interactions for optimal protection; however, the innate effector cells responsible for mediating this protection remain largely unknown. Here, we examine the roles of alveolar macrophages, natural killer cells, and neutrophils in antibody-mediated protection. We demonstrate that alveolar macrophages play a dominant role in conferring protection provided by both broadly neutralizing and non-neutralizing antibodies in mice. Our data also reveal the potential mechanisms by which alveolar macrophages mediate protection in vivo, namely antibody-induced inflammation and antibody-dependent cellular phagocytosis. This study highlights the importance of innate effector cells in establishing a broad-spectrum antiviral state, as well as providing a better understanding of how multiple arms of the immune system cooperate to achieve an optimal antiviral response following influenza virus infection or immunization.Broadly reactive antibodies that recognize influenza A virus HA can be protective, but the mechanism is not completely understood. Here, He et al. show that the inflammatory response and phagocytosis mediated by the interaction between protective antibodies and macrophages are essential for protection.


Pediatric Infectious Disease Journal | 2012

T-cell responses in children to internal influenza antigens, 1 year after immunization with pandemic H1N1 influenza vaccine, and response to revaccination with seasonal trivalent-inactivated influenza vaccine.

Teresa Lambe; Alexandra J. Spencer; Caitlin E. Mullarkey; Richard D. Antrobus; Yu L-M.; P de Whalley; Thompson Bav.; Cheron Jones; Jeremy Chalk; Simon Kerridge; Hill Avs.; Matthew D. Snape; Andrew J. Pollard; Sarah C. Gilbert

Background: During seasonal influenza epidemics, 5–15% of the population are affected with an illness having a nontrivial mortality, morbidity and economic burden. Inactivated influenza vaccines are routinely used to prevent influenza infection, primarily by inducing humoral immunity. In addition, trivalent-inactivated influenza vaccines have previously been shown to boost influenza-specific T-cell responses in a small percentage of adults. We investigate here the influenza-specific T-cell response, in children, 1 year after pandemic H1N1 vaccination and the ability to boost the T-cell response with trivalent-inactivated influenza immunization. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from children previously vaccinated with pandemic H1N1 vaccine, pre- and postseasonal 2010–2011 trivalent influenza vaccine (TIV) vaccination. Samples were analyzed by interferon-gamma enzyme-linked immunosorbent spot for reactogenicity toward internal influenza antigens (nucleoprotein, matrix protein 1 and nonstructural protein 1). Results: Basal ex vivo T-cell responses to nucleoprotein, matrix protein 1 and nonstructural protein 1 measured by interferon-gamma enzyme-linked immunosorbent spot assay were significantly higher in those children who had previously received an AS03B-adjuvanted split virion pandemic vaccine 12 months earlier rather than a nonadjuvanted whole virion vaccine. Boosting of these responses, 21 days after 2010/2011 seasonal TIV vaccination was observed regardless of age or prior pandemic vaccination regime, although boosting was greater in those groups with the lowest initial response. Conclusions: We show here that children previously vaccinated with the 2009 pandemic H1N1 vaccine have measurable T-cell responses 1 year after vaccination. The magnitudes of these responses are dependent on both age of vaccine and type of pandemic H1N1 vaccine used. After 2010/2011 seasonal TIV vaccination, these T-cell responses undergo a small but significant boost.

Collaboration


Dive into the Caitlin E. Mullarkey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Palese

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Wenqian He

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gene S. Tan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Florian Krammer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul E. Leon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge