Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah C. Gilbert is active.

Publication


Featured researches published by Sarah C. Gilbert.


Nature Medicine | 2004

Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans

Helen McShane; Ansar A. Pathan; Clare R. Sander; Sheila M. Keating; Sarah C. Gilbert; Kris Huygen; Helen A. Fletcher; Adrian V. S. Hill

Protective immunity against Mycobacterium tuberculosis depends on the generation of a TH1-type cellular immune response, characterized by the secretion of interferon-γ (IFN-γ) from antigen-specific T cells. The induction of potent cellular immune responses by vaccination in humans has proven difficult. Recombinant viral vectors, especially poxviruses and adenoviruses, are particularly effective at boosting previously primed CD4+ and CD8+ T-cell responses against a number of intracellular pathogens in animal studies. In the first phase 1 study of any candidate subunit vaccine against tuberculosis, recombinant modified vaccinia virus Ankara (MVA) expressing antigen 85A (MVA85A) was found to induce high levels of antigen-specific IFN-γ-secreting T cells when used alone in bacille Calmette-Guérin (BCG)-naive healthy volunteers. In volunteers who had been vaccinated 0.5–38 years previously with BCG, substantially higher levels of antigen-specific IFN-γ-secreting T cells were induced, and at 24 weeks after vaccination these levels were 5–30 times greater than in vaccinees administered a single BCG vaccination. Boosting vaccinations with MVA85A could offer a practical and efficient strategy for enhancing and prolonging antimycobacterial immunity in tuberculosis-endemic areas.


Nature Medicine | 2003

Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans

Samuel J. McConkey; William H. H. Reece; Vasee S. Moorthy; Daniel P. Webster; Susanna Dunachie; Geoff A. Butcher; Jenni M. Vuola; Tom Blanchard; Philip Gothard; Kate E. Watkins; Carolyn M. Hannan; Simone Everaere; Karen Brown; Kent E. Kester; James F. Cummings; Jackie Williams; D. Gray Heppner; Ansar A. Pathan; Katie L. Flanagan; Nirmalan Arulanantham; M. Roberts; Michael Roy; Geoffrey L. Smith; Joerg Schneider; Tim Peto; Robert E. Sinden; Sarah C. Gilbert; Adrian V. S. Hill

In animals, effective immune responses against malignancies and against several infectious pathogens, including malaria, are mediated by T cells. Here we show that a heterologous prime-boost vaccination regime of DNA either intramuscularly or epidermally, followed by intradermal recombinant modified vaccinia virus Ankara (MVA), induces high frequencies of interferon (IFN)-γ-secreting, antigen-specific T-cell responses in humans to a pre-erythrocytic malaria antigen, thrombospondin-related adhesion protein (TRAP). These responses are five- to tenfold higher than the T-cell responses induced by the DNA vaccine or recombinant MVA vaccine alone, and produce partial protection manifest as delayed parasitemia after sporozoite challenge with a different strain of Plasmodium falciparum. Such heterologous prime-boost immunization approaches may provide a basis for preventative and therapeutic vaccination in humans.


Clinical Infectious Diseases | 2011

Potent CD8+ T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA−NP+M1

Tamara Berthoud; Matthew Hamill; Patrick J. Lillie; Lenias Hwenda; Katharine A. Collins; Katie Ewer; Anita Milicic; Hazel C. Poyntz; Teresa Lambe; Helen A. Fletcher; Adrian V. S. Hill; Sarah C. Gilbert

Background. Influenza A viruses cause occasional pandemics and frequent epidemics. Licensed influenza vaccines that induce high antibody titers to the highly polymorphic viral surface antigen hemagglutinin must be re-formulated and readministered annually. A vaccine providing protective immunity to the highly conserved internal antigens could provide longer-lasting protection against multiple influenza subtypes. Methods. We prepared a Modified Vaccinia virus Ankara (MVA) vector encoding nucleoprotein and matrix protein 1 (MVA−NP+M1) and conducted a phase I clinical trial in healthy adults. Results. The vaccine was generally safe and well tolerated, with significantly fewer local side effects after intramuscular rather than intradermal administration. Systemic side effects increased at the higher dose in both frequency and severity, with 5 out of 8 volunteers experiencing severe nausea/vomiting, malaise, or rigors. Ex vivo T-cell responses to NP and M1 measured by IFN-γ ELISPOT assay were significantly increased after vaccination (prevaccination median of 123 spot-forming units/million peripheral blood mononuclear cells, postvaccination peak response median 339, 443, and 1443 in low-dose intradermal, low-dose intramuscular, and high-dose intramuscular groups, respectively), and the majority of the antigen-specific T cells were CD8+. Conclusions. We conclude that the vaccine was both safe and remarkably immunogenic, leading to frequencies of responding T cells that appear to be much higher than those induced by any other influenza vaccination approach. Further studies will be required to find the optimum dose and to assess whether the increased T-cell response to conserved influenza proteins results in protection from influenza disease.


Vaccine | 1998

Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime

Tomáš Hanke; Tom Blanchard; Joerg Schneider; Carolyn M. Hannan; Marion Becker; Sarah C. Gilbert; Adrian V. S. Hill; Geoffrey L. Smith; Andrew J. McMichael

Human immunodeficiency virus (HIV) vaccine candidates were previously constructed as a string of cytotoxic T lymphocyte (CTL) epitopes delivered and expressed using DNA and modified virus Ankara (MVA; an attenuated vaccinia virus) vectors. These vaccines were shown to induce interferon (IFN)-gamma-producing and cytolytic CD8+ T cells after a single vaccine administration. In the course of this work, immunization protocols were sought which would improve the levels of induced HIV-specific T cells. It was found that previous immunological exposure to MVA reduced the efficiency of subsequent priming and boosting using the same vaccine vehicle. However, a combined regime whereby the animals were first primed with the DNA vaccine and then boosted with MVA was the most potent protocol for the induction of both interferon-gamma-producing and cytolytic T cells against two CTL epitopes simultaneously. The general applicability of this novel vaccination method for induction of major histocompatibility complex class I-restricted T cells is discussed.


Infection and Immunity | 2001

Enhanced Immunogenicity of CD4+ T-Cell Responses and Protective Efficacy of a DNA-Modified Vaccinia Virus Ankara Prime-Boost Vaccination Regimen for Murine Tuberculosis

Helen McShane; Roger Brookes; Sarah C. Gilbert; Adrian V. S. Hill

ABSTRACT DNA vaccines whose DNA encodes a variety of antigens fromMycobacterium tuberculosis have been evaluated for immunogenicity and protective efficacy. CD8+ T-cell responses and protection achieved in other infectious disease models have been optimized by using a DNA immunization to prime the immune system and a recombinant virus encoding the same antigen(s) to boost the response. A DNA vaccine (D) and recombinant modified vaccinia virus Ankara (M) in which the DNA encodes early secreted antigenic target 6 and mycobacterial protein tuberculosis 63 synthesized, and each was found to generate specific gamma interferon (IFN-γ)-secreting CD4+ T cells. Enhanced CD4+ IFN-γ T-cell responses were produced by both D-M and M-D immunization regimens. Significantly higher levels of IFN-γ were seen with a D-D-D-M immunization regimen. The most immunogenic regimens were assessed in a challenge study and found to produce protection equivalent to that produced by Mycobacterium bovis BCG. Thus, heterologous prime-boost regimens boost CD4+ as well as CD8+T-cell responses, and the use of heterologous constructs encoding the same antigen(s) may improve the immunogenicity and protective efficacy of DNA vaccines against tuberculosis and other diseases.


Infection and Immunity | 2009

Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

H. Martin Vordermeier; Bernardo Villarreal-Ramos; Paul J. Cockle; Martin McAulay; Shelley Rhodes; Tyler C. Thacker; Sarah C. Gilbert; Helen McShane; Adrian V. S. Hill; Zhou Xing; R. Glyn Hewinson

ABSTRACT Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.


Immunological Reviews | 1999

Induction of CD8+ T cells using heterologous prime-boost immunisation strategies

Jörg Schneider; Sarah C. Gilbert; Carolyn M. Hannan; Pilar Dégano; Eric Prieur; Eric G. Sheu; Magdalena Plebanski; Adrian V. S. Hill

Summary: One of the current challenges in vaccine design is the development of antigen delivery systems or vaccination strategies that induce higb protective levels of CD8+ T cells. These cells are crucial for protection against certain tumours and intracellular pathogens such as the liver‐stage parasite of malaria, A liver‐stage malaria vaccine should therefore include CD8+ T‐cell‐inducing components. This review provides an overview of prime‐boost immunisation strategies that result in protective CD8’ T‐cell responses against malaria with an emphasis on work from our laboratory. Possible mechanisms explaining why heterologous prime‐boost strategies, in particular boosting with replication‐impaired recombinant poxviruses, are so effective are discussed.


Nature Communications | 2013

Protective CD8 + T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation

Katie Ewer; Geraldine A. O'Hara; Christopher J. A. Duncan; Katharine A. Collins; Susanne H. Sheehy; Arturo Reyes-Sandoval; Anna L. Goodman; Nick J. Edwards; Sean C. Elias; Fenella D. Halstead; Rhea J. Longley; Rosalind Rowland; Ian D. Poulton; Simon J. Draper; Andrew M. Blagborough; Eleanor Berrie; Sarah Moyle; Nicola Williams; Loredana Siani; Antonella Folgori; Stefano Colloca; Robert E. Sinden; Alison M. Lawrie; Riccardo Cortese; Sarah C. Gilbert; Alfredo Nicosia; Adrian V. S. Hill

Induction of antigen-specific CD8+ T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8+ T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/106 peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8+ T cells, but not antibodies, correlates with sterile protection and delay in time to patency (Pcorrected=0.005). Vaccine-induced CD8+ T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria

Nathan W. Schmidt; Rebecca L. Podyminogin; Noah S. Butler; Vladimir P. Badovinac; Brad Tucker; Keith S. Bahjat; Peter Lauer; Arturo Reyes-Sandoval; Claire Hutchings; Anne C. Moore; Sarah C. Gilbert; Adrian V. S. Hill; Lyric C. Bartholomay; John T. Harty

Infection of mice with sporozoites of Plasmodium berghei or Plasmodium yoelii has been used extensively to evaluate liver-stage protection by candidate preerythrocytic malaria vaccines. Unfortunately, repeated success of such vaccines in mice has not translated readily to effective malaria vaccines in humans. Thus, mice may be used better as models to dissect basic parameters required for immunity to Plasmodium-infection than as preclinical vaccine models. In turn, this basic information may aid in the rational design of malaria vaccines. Here, we describe a model of circumsporozoite-specific memory CD8 T cell generation that protects mice against multiple P. berghei sporozoite challenges for at least 19 months. Using this model we defined a threshold frequency of memory CD8 T cells in the blood that predicts long-term sterilizing immunity against liver-stage infection. Importantly, the number of Plasmodium-specific memory CD8 T cells required for immunity greatly exceeds the number required for resistance to other pathogens. In addition, this model allowed us to identify readily individual immunized mice that exceed or fall below the protective threshold before infection, information that should greatly facilitate studies to dissect basic mechanisms of protective CD8 T cell memory against liver-stage Plasmodium infection. Furthermore, the extremely large threshold in memory CD8 T cell frequencies required for long-term protection in mice may have important implications for development of effective malaria vaccines.


Clinical Infectious Diseases | 2012

Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans

Patrick J. Lillie; Tamara Berthoud; Timothy J. Powell; Teresa Lambe; Caitlin E. Mullarkey; Alexandra J. Spencer; Matthew Hamill; Yanchun Peng; Marie Eve Blais; Christopher J. A. Duncan; Susanne H. Sheehy; Tom Havelock; Saul N. Faust; Rob Lambkin Williams; Anthony Gilbert; John Oxford; Tao Dong; Adrian V. S. Hill; Sarah C. Gilbert

A single vaccination with MVA-NP+M1 boosts T-cell responses to conserved influenza antigens in humans. Protection against influenza disease and virus shedding was demonstrated in an influenza virus challenge study.

Collaboration


Dive into the Sarah C. Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge