Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caius G. Radu is active.

Publication


Featured researches published by Caius G. Radu.


Nature Medicine | 2011

A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells.

Chao Ma; Rong Fan; Habib Ahmad; Qihui Shi; Begonya Comin-Anduix; Thinle Chodon; Richard C. Koya; Chao-Chao Liu; Gabriel A. Kwong; Caius G. Radu; Antoni Ribas; James R. Heath

Cellular immunity has an inherent high level of functional heterogeneity. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. We report a microfluidic platform designed for highly multiplexed (more than ten proteins), reliable, sample-efficient (∼1 × 104 cells) and quantitative measurements of secreted proteins from single cells. We validated the platform by assessment of multiple inflammatory cytokines from lipopolysaccharide (LPS)-stimulated human macrophages and comparison to standard immunotechnologies. We applied the platform toward the ex vivo quantification of T cell polyfunctional diversity via the simultaneous measurement of a dozen effector molecules secreted from tumor antigen–specific cytotoxic T lymphocytes (CTLs) that were actively responding to tumor and compared against a cohort of healthy donor controls. We observed profound, yet focused, functional heterogeneity in active tumor antigen–specific CTLs, with the major functional phenotypes quantitatively identified. The platform represents a new and informative tool for immune monitoring and clinical assessment.


European Journal of Immunology | 1999

Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn

Jin-Kyoo Kim; Mihail Firan; Caius G. Radu; Cheol-Hong Kim; Victor Ghetie; E. Sally Ward

The analysis of the pharmacokinetics of wild‐type and mutated Fc fragments derived from human IgG1 indicates that Ile253, His310 and His435 play a central role in regulating serum half‐life in mice. Reduced serum half‐life of the recombinant, mutated fragments correlates with decreased binding to the MHC class I‐related neonatal Fc receptor, FcRn. In addition, the analysis of an Fc fragment in which His435 is mutated to Arg435 demonstrates that the sequence difference at this position between human IgG1 (His435) and IgG3 (Arg435) most likely accounts for the shorter serum half‐life of IgG3 relative to IgG1. In contrast to His310 and His435, the data indicate that His433 does not play a role in regulating the serum half‐life of human IgG1. Thus, the interaction site of mouse FcRn on human and mouse IgG1 involves the same conserved amino acids located at the CH2‐CH3 domain interface of the IgG molecule. The sequence similarities between mouse and human FcRn suggest that these studies have direct relevance to understanding the factors that govern the pharmacokinetics of therapeutic IgG.


Journal of Biological Chemistry | 2008

Migration to apoptotic "find-me" signals is mediated via the phagocyte receptor G2A

Christoph Peter; Michaela Waibel; Caius G. Radu; Li V. Yang; Owen N. Witte; Klaus Schulze-Osthoff; Sebastian Wesselborg; Kirsten Lauber

Phagocytosis of apoptotic cells is fundamentally important throughout life, because non-cleared cells become secondarily necrotic and release intracellular contents, thus instigating inflammatory and autoimmune responses. Secreted “find-me” and exposed “eat-me” signals displayed by the dying cell in concert with the phagocyte receptors comprise the phagocytic synapse of apoptotic cell clearance. In this scenario, lysophospholipids (lysoPLs) are assumed to act as find-me signals for the attraction of phagocytes. However, both the identity of the lyso-PLs released from apoptotic cells and the nature of the phagocyte receptor are largely unknown. By a detailed analysis of the structural requirements we show here that lysophosphatidylcholine (lysoPC), but none of the lysoPC metabolites or other lysoPLs, represents the essential apoptotic attraction signal able to trigger a phagocyte chemotactic response. Furthermore, using RNA interference and expression studies, we demonstrate that the G-protein-coupled receptor G2A, unlike its relative GPR4, is involved in the chemotaxis of monocytic cells. Thus, our study identifies lysoPC and G2A as the crucial receptor/ligand system for the attraction of phagocytes to apoptotic cells and the prevention of autoimmunity.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis

Deliang Guo; Isabel Hildebrandt; Robert M. Prins; Horacio Soto; Mary M. Mazzotta; Julie Dang; Johannes Czernin; John Y.-J. Shyy; Andrew D. Watson; Michael E. Phelps; Caius G. Radu; Timothy F. Cloughesy; Paul S. Mischel

The EGFR/PI3K/Akt/mTOR signaling pathway is activated in many cancers including glioblastoma, yet mTOR inhibitors have largely failed to show efficacy in the clinic. Rapamycin promotes feedback activation of Akt in some patients, potentially underlying clinical resistance and raising the need for alternative approaches to block mTOR signaling. AMPK is a metabolic checkpoint that integrates growth factor signaling with cellular metabolism, in part by negatively regulating mTOR. We used pharmacological and genetic approaches to determine whether AMPK activation could block glioblastoma growth and cellular metabolism, and we examined the contribution of EGFR signaling in determining response in vitro and in vivo. The AMPK-agonist AICAR, and activated AMPK adenovirus, inhibited mTOR signaling and blocked the growth of glioblastoma cells expressing the activated EGFR mutant, EGFRvIII. Across a spectrum of EGFR-activated cancer cell lines, AICAR was more effective than rapamycin at blocking tumor cell proliferation, despite less efficient inhibition of mTORC1 signaling. Unexpectedly, addition of the metabolic products of cholesterol and fatty acid synthesis rescued the growth inhibitory effect of AICAR, whereas inhibition of these lipogenic enzymes mimicked AMPK activation, thus demonstrating that AMPK blocked tumor cell proliferation primarily through inhibition of cholesterol and fatty acid synthesis. Most importantly, AICAR treatment in mice significantly inhibited the growth and glycolysis (as measured by 18fluoro-2-deoxyglucose microPET) of glioblastoma xenografts engineered to express EGFRvIII, but not their parental counterparts. These results suggest a mechanism by which AICAR inhibits the proliferation of EGFRvIII expressing glioblastomas and point toward a potential therapeutic strategy for targeting EGFR-activated cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2004

T cell chemotaxis to lysophosphatidylcholine through the G2A receptor

Caius G. Radu; Li V. Yang; Mireille Riedinger; Matthew Au; Owen N. Witte

G2A is an immunoregulatory G protein-coupled receptor predominantly expressed in lymphocytes and macrophages. Ectopic overexpression studies have implicated G2A as a receptor for the bioactive lysophospholipid, lysophosphatidylcholine (LPC). However, the functional consequences of LPC–G2A interaction at physiological levels of receptor expression, and in a cellular context relevant to its immunological role, remain largely unknown. Here, we show impaired chemotaxis to LPC of a T lymphoid cell line in which G2A expression was chronically down-regulated by RNA interference technology. Rescuing this phenotype by reconstitution of the physiological level of receptor expression further supports a functional connection between LPC–G2A interaction and cellular motility. Overexpression of G2A in the T lymphoid cell line significantly enhanced chemotaxis to LPC. It also modified migration toward the LPC-related molecule, lysophosphatidic acid, indicating the possibility of crosstalk between G2A and endogenous lysophosphatidic acid receptors. The role of G2A in LPC-mediated cell migration may be relevant to the autoimmune syndrome associated with genetic inactivation of this G protein-coupled receptor in mice. The experimental system described here can be useful for understanding the structural requirements for LPC recognition by G2A and the signaling pathways regulated by this ligand-receptor pair.


Angewandte Chemie | 2009

Supramolecular approach for preparation of size controllable nanoparticles

Hsian-Rong Tseng; Hao Wang; Shutao Wang; Helen Su; Caius G. Radu; Johannes Czernin

A supramolecular approach has been developed for the preparation of supramolecular nanoparticles (SNPs) with variable sizes (30-450 nm) from three different molecular building blocks using a cyclodextrin/adamantane recognition system. Positron emission tomography (PET) was employed to study the biodistribution and lymph node drainage of the SNPs in mice. The sizes of the SNPs affect their in vivo characteristics (see picture).


Nature Medicine | 2008

Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2'-deoxycytidine analog.

Caius G. Radu; Chengyi J. Shu; Evan Nair-Gill; Stephanie M. Shelly; Jorge R. Barrio; Nagichettiar Satyamurthy; Michael E. Phelps; Owen N. Witte

Monitoring immune function with molecular imaging could have a considerable impact on the diagnosis and treatment evaluation of immunological disorders and therapeutic immune responses. Positron emission tomography (PET) is a molecular imaging modality with applications in cancer and other diseases. PET studies of immune function have been limited by a lack of specialized probes. We identified [18F]FAC (1-(2′-deoxy-2′-[18F]fluoroarabinofuranosyl) cytosine) by differential screening as a new PET probe for the deoxyribonucleotide salvage pathway. [18F]FAC enabled visualization of lymphoid organs and was sensitive to localized immune activation in a mouse model of antitumor immunity. [18F]FAC microPET also detected early changes in lymphoid mass in systemic autoimmunity and allowed evaluation of immunosuppressive therapy. These data support the use of [18F]FAC PET for immune monitoring and suggest a wide range of clinical applications in immune disorders and in certain types of cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Kinetics and thermodynamics of T cell receptor– autoantigen interactions in murine experimental autoimmune encephalomyelitis

K. Christopher Garcia; Caius G. Radu; Joseph D. Ho; Raimund J. Ober; E. Sally Ward

In the current study, cellular and molecular approaches have been used to analyze the biophysical nature of T cell receptor (TCR)–peptide MHC (pMHC) interactions for two autoreactive TCRs. These two TCRs recognize the N-terminal epitope of myelin basic protein (MBP1–11) bound to the MHC class II protein, I-Au, and are associated with murine experimental autoimmune encephalomyelitis. Mice transgenic for the TCRs have been generated and characterized in other laboratories. These analyses indicate that the mice either develop encephalomyelitis spontaneously (172.10 TCR) or only if immunized with autoantigen in adjuvant (1934.4 TCR). Here, we show that the 172.10 TCR binds MBP1–11:I-Au with a 4–5-fold higher affinity than the 1934.4 TCR. Consistent with the higher affinity, 172.10 T hybridoma cells are significantly more responsive to autoantigen than 1934.4 cells. The interaction of the 172.10 TCR with cognate ligand is more entropically unfavorable than that of the 1934.4 TCR, indicating that the 172.10 TCR undergoes greater conformational rearrangements upon ligand binding. The studies therefore suggest a correlation between the strength and plasticity of a TCR–pMHC interaction and the frequency of spontaneous disease in the corresponding TCR transgenic mice. The comparative analysis of these two TCRs has implications for understanding autoreactive T cell recognition and activation.


Journal of Immunology | 2007

Requirements for T Lymphocyte Migration in Explanted Lymph Nodes

Julie H. Huang; L. Isabel Cárdenas-Navia; Charles C. Caldwell; Troy J. Plumb; Caius G. Radu; Paulo Novis Rocha; Tuere Wilder; Jonathan S. Bromberg; Bruce N. Cronstein; Michail Sitkovsky; Mark W. Dewhirst; Michael L. Dustin

Although the requirements for T lymphocyte homing to lymph nodes (LNs) are well studied, much less is known about the requirements for T lymphocyte locomotion within LNs. Imaging of murine T lymphocyte migration in explanted LNs using two-photon laser-scanning fluorescence microscopy provides an opportunity to systematically study these requirements. We have developed a closed system for imaging an intact LN with controlled temperature, oxygenation, and perfusion rate. Naive T lymphocyte locomotion in the deep paracortex of the LN required a perfusion rate of >13 μm/s and a partial pressure of O2 (pO2) of >7.4%. Naive T lymphocyte locomotion in the subcapsular region was 38% slower and had higher turning angles and arrest coefficients than naive T lymphocytes in the deep paracortex. T lymphocyte activation decreased the requirement for pO2, but also decreased the speed of locomotion in the deep paracortex. Although CCR7−/− naive T cells displayed a small reduction in locomotion, systemic treatment with pertussis toxin reduced naive T lymphocyte speed by 59%, indicating a contribution of Gαi-mediated signaling, but involvement of other G protein-coupled receptors besides CCR7. Receptor knockouts or pharmacological inhibition in the adenosine, PG/lipoxygenase, lysophosphatidylcholine, and sphingosine-1-phosphate pathways did not individually alter naive T cell migration. These data implicate pO2, tissue architecture, and G-protein coupled receptor signaling in regulation of naive T lymphocyte migration in explanted LNs.


Immunity | 2002

Structural Snapshot of Aberrant Antigen Presentation Linked to Autoimmunity: The Immunodominant Epitope of MBP Complexed with I-Au

Xiaolin He; Caius G. Radu; John Sidney; Alessandro Sette; E. Sally Ward; K. Christopher Garcia

Murine experimental allergic encephalomyelitis (EAE) is a useful model for the demyelinating, autoimmune disease multiple sclerosis. In the EAE system, the immunodominant N-terminal epitope of myelin basic protein (MBP) is an unusually short, weakly binding peptide antigen which elicits highly biased TCR chain usage. In the 2.2 A crystal structure of I-A(u)/MBP1-11 complex, only MBP residues 1-7 are bound toward one end of the peptide binding cleft. The fourth residue of MBP1-11 is located in an incompatible p6 pocket of I-A(u), thus explaining the short half-life of I-A(u) complexed with Ac1-11. MBP peptides extended at the C terminus of Ac1-11 result in dramatic affinity increases, likely attributed to register shifting to a higher affinity cryptic epitope, which could potentially mask the presentation of the immunodominant MBP1-11 peptide during thymic education.

Collaboration


Dive into the Caius G. Radu's collaboration.

Top Co-Authors

Avatar

Owen N. Witte

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoni Ribas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengyi J. Shu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge