Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Sally Ward is active.

Publication


Featured researches published by E. Sally Ward.


Biophysical Journal | 2004

Localization Accuracy in Single-Molecule Microscopy

Raimund J. Ober; Sripad Ram; E. Sally Ward

One of the most basic questions in single-molecule microscopy concerns the accuracy with which the location of a single molecule can be determined. Using the Fisher information matrix it is shown that the limit of the localization accuracy for a single molecule is given by, lambda(em)/2pi n(a) square root of gammaAt, where lambda(em), n(a), gamma, A, and t denote the emission wavelength of the single molecule, the numerical aperture of the objective, the efficiency of the optical system, the emission rate of the single molecule and the acquisition time, respectively. Using Monte Carlo simulations it is shown that estimation algorithms can come close to attaining the limit given in the expression. Explicit quantitative results are also provided to show how the limit of the localization accuracy is reduced by factors such as pixelation of the detector and noise sources in the detection system. The results demonstrate what is achievable by single-molecule microscopy and provide guidelines for experimental design.


Journal of Immunology | 2002

Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences.

William F. Dall’Acqua; Robert M. Woods; E. Sally Ward; Susan R. Palaszynski; Nita K. Patel; Yambasu A. Brewah; Herren Wu; Peter A. Kiener; Solomon Langermann

Many biological functions, including control of the homeostasis and maternofetal transfer of serum γ-globulins, are mediated by the MHC class I-related neonatal FcR (FcRn). A correlation exists in mice between the binding affinity of IgG1/Fc fragments to FcRn at pH 6.0 and their serum t1/2. To expand this observation, phage display of mutagenized Fc fragments derived from a human IgG1 was used to increase their affinity to both murine and human FcRn. Ten variants were identified that have a higher affinity toward murine and human FcRn at pH 6.0, with ΔΔG (ΔGwild type − ΔGmutant) from 1.0 to 2.0 kcal/mol and from 0.6 to 2.4 kcal/mol, respectively. Those variants exhibit a parallel increase in binding at pH 7.4 to murine, but not human, FcRn. Although not degraded in blood in vitro, accumulated in tissues, nor excreted in urine, their serum concentration in mice is decreased. We propose that higher affinity to FcRn at pH 7.4 adversely affects release into the serum and offsets the benefit of the enhanced binding at pH 6.0.


Journal of Experimental Medicine | 2002

Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life : functional expression of FcRn in the mammalian lung

Gerburg M. Spiekermann; Patricia W. Finn; E. Sally Ward; Jennifer A. Dumont; Bonny L. Dickinson; Richard S. Blumberg; Wayne I. Lencer

Mucosal secretions of the human gastrointestinal, respiratory, and genital tracts contain the immunoglobulins (Ig)G and secretory IgA (sIgA) that function together in host defense. Exactly how IgG crosses epithelial barriers to function in mucosal immunity remains unknown. Here, we test the idea that the MHC class I–related Fc-receptor, FcRn, transports IgG across the mucosal surface of the human and mouse lung from lumen to serosa. We find that bronchial epithelial cells of the human, nonhuman primate, and mouse, express FcRn in adult-life, and demonstrate FcRn-dependent absorption of a bioactive Fc-fusion protein across the respiratory epithelium of the mouse in vivo. Thus, IgG, like dimeric IgA, can cross epithelial barriers by receptor-mediated transcytosis in adult animals. These data show that mucosal surfaces that express FcRn reabsorb IgG and explain a mechanism by which IgG may act in immune surveillance to retrieve lumenal antigens for processing in the lamina propria or systemically.


Immunology Today | 1997

FcRn: the MHC class I-related receptor that is more than an IgG transporter

Victor Ghetie; E. Sally Ward

Recent data have indicated that the major histocompatibility complex (MHC) class I-related receptor FcRn plays a role in regulating serum IgG levels, in addition to transferring maternal IgGs across the rodent neonatal gut. The isolation of a human homolog of FcRn from placenta suggests that the studies in rodents have relevance to understanding similar processes in humans. This has implications for the engineering of improved antibodies for therapy.


European Journal of Immunology | 1999

Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn

Jin-Kyoo Kim; Mihail Firan; Caius G. Radu; Cheol-Hong Kim; Victor Ghetie; E. Sally Ward

The analysis of the pharmacokinetics of wild‐type and mutated Fc fragments derived from human IgG1 indicates that Ile253, His310 and His435 play a central role in regulating serum half‐life in mice. Reduced serum half‐life of the recombinant, mutated fragments correlates with decreased binding to the MHC class I‐related neonatal Fc receptor, FcRn. In addition, the analysis of an Fc fragment in which His435 is mutated to Arg435 demonstrates that the sequence difference at this position between human IgG1 (His435) and IgG3 (Arg435) most likely accounts for the shorter serum half‐life of IgG3 relative to IgG1. In contrast to His310 and His435, the data indicate that His433 does not play a role in regulating the serum half‐life of human IgG1. Thus, the interaction site of mouse FcRn on human and mouse IgG1 involves the same conserved amino acids located at the CH2‐CH3 domain interface of the IgG molecule. The sequence similarities between mouse and human FcRn suggest that these studies have direct relevance to understanding the factors that govern the pharmacokinetics of therapeutic IgG.


Journal of Immunology | 2004

Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn.

Raimund J. Ober; Cruz Martinez; Carlos Vaccaro; Jinchun Zhou; E. Sally Ward

The MHC class I-related receptor, FcRn, plays a central role in regulating the serum levels of IgG. FcRn is expressed in endothelial cells, suggesting that these cells may be involved in maintaining IgG levels. We have used live cell imaging of FcRn-green fluorescent protein transfected human endothelial cells to analyze the intracellular events that control IgG homeostasis. We show that segregation of FcRn-IgG complexes from unbound IgG occurs in the sorting endosome. FcRn or FcRn-IgG complexes are gradually depleted from sorting endosomes to ultimately generate multivesicular bodies whose contents are destined for lysosomal degradation. In addition, the pathways taken by FcRn and the transferrin receptor overlap, despite distinct mechanisms of ligand uptake. The studies provide a dynamic view of the trafficking of FcRn and its ligand and have relevance to understanding how FcRn functions to maintain IgG homeostasis.


Biophysical Journal | 2008

High Accuracy 3D Quantum Dot Tracking with Multifocal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells

Sripad Ram; Prashant Prabhat; Jerry Chao; E. Sally Ward; Raimund J. Ober

Single particle tracking in three dimensions in a live cell environment holds the promise of revealing important new biological insights. However, conventional microscopy-based imaging techniques are not well suited for fast three-dimensional (3D) tracking of single particles in cells. Previously we developed an imaging modality multifocal plane microscopy (MUM) to image fast intracellular dynamics in three dimensions in live cells. Here, we introduce an algorithm, the MUM localization algorithm (MUMLA), to determine the 3D position of a point source that is imaged using MUM. We validate MUMLA through simulated and experimental data and show that the 3D position of quantum dots can be determined over a wide spatial range. We demonstrate that MUMLA indeed provides the best possible accuracy with which the 3D position can be determined. Our analysis shows that MUM overcomes the poor depth discrimination of the conventional microscope, and thereby paves the way for high accuracy tracking of nanoparticles in a live cell environment. Here, using MUM and MUMLA we report for the first time the full 3D trajectories of QD-labeled antibody molecules undergoing endocytosis in live cells from the plasma membrane to the sorting endosome deep inside the cell.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice

Héctor Perez Montoyo; Carlos Vaccaro; Martin Hafner; Raimund J. Ober; Werner Mueller; E. Sally Ward

The MHC class I-related receptor FcRn regulates the levels and persistence of IgG in vivo. This receptor salvages IgG from lysosomal degradation within cells, and the binding properties of an IgG for FcRn correlate with in vivo half-life. FcRn is expressed at multiple different sites throughout adult life. However, the cell types and sites at which FcRn maintains IgG homeostasis are not well defined. Toward understanding the sites of FcRn function, we have generated a mouse strain in which this Fc receptor can be conditionally deleted. In combination with mice that express Cre recombinase under the control of the Tie2 promoter (Tie2-Cre), the effect of site-specific deletion of floxed FcRn in endothelial and hematopoietic cells on IgG persistence was analyzed. The pharmacokinetics and steady-state levels of IgG in Tie2-Cre mice that are homozygous for the floxed FcRn allele reveal a complete loss of FcRn function in regulating the half-lives of wild-type IgG. The primary sites for the maintenance of endogenous IgGs in mice are therefore endothelial and hematopoietic cells.


Immunologic Research | 2002

Transcytosis and catabolism of antibody

Victor Ghetie; E. Sally Ward

This review describes the evolution of our knowledge of the transmission of immunoglobulin G (IgG) from mother to infant and the factors which regulate the persistence of IgG in the circulation. These apparently unrelated processes involve the same Fc receptor, FcRn (n=neonatal). FcRn appears to carry out these diverse roles by binding to IgG and then either transporting the bound IgG across cells (transcytosis) or recycling its cargo back to the cell surface (control of catabolism). IgG that is taken up by cells in the absence of binding to FcRn undergoes degradation. Thus, FcRn is the “protective” receptor that servesto maintain IgG homeostasis and deliver IgGs across cellular barriers.


Advances in Immunology | 2009

Chapter 4 Multitasking by Exploitation of Intracellular Transport Functions: The Many Faces of FcRn

E. Sally Ward; Raimund J. Ober

The MHC Class I-related receptor, FcRn, transports antibodies of the immunoglobulin G (IgG) class within and across a diverse array of different cell types. Through this transport, FcRn serves multiple roles throughout adult life that extend well beyond its earlier defined function of transcytosing IgGs from mother to offspring. These roles include the maintenance of IgG levels and the delivery of antigen in the form of immune complexes to degradative compartments within cells. Recent studies have led to significant advances in knowledge of the intracellular trafficking of FcRn and (engineered) IgGs at both the molecular and cellular levels. The engineering of FcRn-IgG (or Fc) interactions to generate antibodies of increased longevity represents an area of active interest, particularly in the light of the expanding use of antibodies in therapy. The strict pH dependence of FcRn-IgG interactions, with binding at pH 6 that becomes essentially undetectable as near neutral pH is approached, is essential for efficient transport. The requirement for retention of low affinity at near neutral pH increases the complexity of engineering antibodies for increased half-life. Conversely, engineered IgGs that have gained significant binding for FcRn at this pH can be potent inhibitors of FcRn that lower endogenous IgG levels and have multiple potential uses as therapeutics. In addition, molecular studies of FcRn-IgG interactions indicate that mice have limitations as preclinical models for FcRn function, primarily due to cross-species differences in FcRn-binding specificity.

Collaboration


Dive into the E. Sally Ward's collaboration.

Top Co-Authors

Avatar

Sripad Ram

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Ghetie

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Caius G. Radu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ramraj Velmurugan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dilip K. Challa

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anish V. Abraham

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Carlos Vaccaro

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge