Calliope A. Dendrou
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Calliope A. Dendrou.
Nature Reviews Immunology | 2015
Calliope A. Dendrou; Lars Fugger; Manuel A. Friese
Two decades of clinical experience with immunomodulatory treatments for multiple sclerosis point to distinct immunological pathways that drive disease relapses and progression. In light of this, we discuss our current understanding of multiple sclerosis immunopathology, evaluate long-standing hypotheses regarding the role of the immune system in the disease and delineate key questions that are still unanswered. Recent and anticipated advances in the field of immunology, and the increasing recognition of inflammation as an important component of neurodegeneration, are shaping our conceptualization of disease pathophysiology, and we explore the potential implications for improved healthcare provision to patients in the future.
Nature Genetics | 2009
Calliope A. Dendrou; Vincent Plagnol; Erik Fung; Jennie H. M. Yang; Kate Downes; Jason D. Cooper; Sarah Nutland; Gillian Coleman; Matthew Himsworth; Matthew Hardy; Oliver Burren; Barry Healy; Neil M Walker; Kerstin Koch; Willem H. Ouwehand; John R. Bradley; Nicholas J. Wareham; John A. Todd; Linda S. Wicker
Genome-wide association studies (GWAS) have identified over 300 regions associated with more than 70 common diseases. However, identifying causal genes within an associated region remains a major challenge. One approach to resolving causal genes is through the dissection of gene-phenotype correlations. Here we use polychromatic flow cytometry to show that differences in surface expression of the human interleukin-2 (IL-2) receptor alpha (IL2RA, or CD25) protein are restricted to particular immune cell types and correlate with several haplotypes in the IL2RA region that have previously been associated with two autoimmune diseases, type 1 diabetes (T1D) and multiple sclerosis. We confirm our strongest gene-phenotype correlation at the RNA level by allele-specific expression (ASE). We also define key parameters for the design and implementation of post-GWAS gene-phenotype investigations and demonstrate the usefulness of a large bioresource of genotype-selectable normal donors from whom fresh, primary cells can be analyzed.
Nature | 2012
Adam Patrick Gregory; Calliope A. Dendrou; Kathrine E. Attfield; Aiden Haghikia; Dionysia K. Xifara; Falk Butter; Gereon Poschmann; Gurman Kaur; Lydia Lambert; Oliver A. Leach; Simone Prömel; Divya Punwani; James H. Felce; Simon J. Davis; Ralf Gold; Finn C. Nielsen; Richard M. Siegel; Matthias Mann; John I. Bell; Gil McVean; Lars Fugger
Although there has been much success in identifying genetic variants associated with common diseases using genome-wide association studies (GWAS), it has been difficult to demonstrate which variants are causal and what role they have in disease. Moreover, the modest contribution that these variants make to disease risk has raised questions regarding their medical relevance. Here we have investigated a single nucleotide polymorphism (SNP) in the TNFRSF1A gene, that encodes tumour necrosis factor receptor 1 (TNFR1), which was discovered through GWAS to be associated with multiple sclerosis (MS), but not with other autoimmune conditions such as rheumatoid arthritis, psoriasis and Crohn’s disease. By analysing MS GWAS data in conjunction with the 1000 Genomes Project data we provide genetic evidence that strongly implicates this SNP, rs1800693, as the causal variant in the TNFRSF1A region. We further substantiate this through functional studies showing that the MS risk allele directs expression of a novel, soluble form of TNFR1 that can block TNF. Importantly, TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven highly efficacious in the treatment of autoimmune diseases for which there is no association with rs1800693. This indicates that the clinical experience with these drugs parallels the disease association of rs1800693, and that the MS-associated TNFR1 variant mimics the effect of TNF-blocking drugs. Hence, our study demonstrates that clinical practice can be informed by comparing GWAS across common autoimmune diseases and by investigating the functional consequences of the disease-associated genetic variation.
Nature Genetics | 2015
Loukas Moutsianas; Luke Jostins; Ashley Beecham; Alexander Dilthey; Dionysia K. Xifara; Maria Ban; Tejas Shah; Nikolaos A. Patsopoulos; Lars Alfredsson; Carl A. Anderson; Kathrine E. Attfield; Sergio E. Baranzini; Jeffrey C. Barrett; Binder Tmc.; David R. Booth; Dorothea Buck; Elisabeth G. Celius; Chris Cotsapas; Sandra D'Alfonso; Calliope A. Dendrou; Peter Donnelly; Bénédicte Dubois; Bertrand Fontaine; Lars Fugger; An Goris; Gourraud P-A.; Christiane Graetz; B. Hemmer; Jan Hillert; Ingrid Kockum
Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles.
Journal of Cell Science | 2007
Brooke Morriswood; Grigory Ryzhakov; Claudia Puri; Susan D. Arden; Rhys C. Roberts; Calliope A. Dendrou; John Kendrick-Jones; Folma Buss
Myosin VI has been implicated in many cellular processes including endocytosis, secretion, membrane ruffling and cell motility. We carried out a yeast two-hybrid screen and identified TRAF6-binding protein (T6BP) and nuclear dot protein 52 (NDP52) as myosin VI binding partners. Myosin VI interaction with T6BP and NDP52 was confirmed in vitro and in vivo and the binding sites on each protein were accurately mapped. Immunofluorescence and electron microscopy showed that T6BP, NDP52 and myosin VI are present at the trans side of the Golgi complex, and on vesicles in the perinuclear region. Although the SKICH domain in T6BP and NDP52 does not mediate recruitment into membrane ruffles, loss of T6BP and NDP52 in RNAi knockdown cells results in reduced membrane ruffling activity and increased stress fibre and focal adhesion formation. Furthermore, we observed in these knockdown cells an upregulation of constitutive secretion of alkaline phosphatase, implying that both proteins act as negative regulators of secretory traffic at the Golgi complex. T6BP was also found to inhibit NF-κB activation, implicating it in the regulation of TRAF6-mediated cytokine signalling. Thus myosin VI-T6BP interactions may link membrane trafficking pathways with cell adhesion and cytokine-dependent cell signalling.
Journal of Clinical Immunology | 2008
Calliope A. Dendrou; Linda S. Wicker
Although the interleukin-2 (IL-2)/IL-2R signaling pathway has been the focus of numerous studies, certain aspects of its molecular regulation are not well characterized, especially in non-T cells, and a more complete understanding of the pathway is necessary to discern the functional basis of the genetic association between the IL-2-IL-21 and IL-2RA/CD25 gene regions and T1D in humans. Genetic variation in these regions may promote T1D susceptibility by influencing transcription and/or splicing and, hence, IL-2 and IL-2RA/CD25 expression at the protein level in different immune cell subsets; thus, there is a need to establish links between the genetic variation and immune cell phenotypes and functions in humans, which can be further investigated and validated in mouse models. The detection and characterization of genetically determined immunophenotypes should aid in elucidating disease mechanisms and may enable future monitoring of disease initiation and progression in prediabetic subjects and of responses to therapeutic intervention.
Journal of Immunology | 2010
Heather I. Fraser; Calliope A. Dendrou; Barry Healy; Daniel B. Rainbow; Sarah Howlett; Luc J. Smink; Simon G. Gregory; Charles A. Steward; John A. Todd; Laurence B. Peterson; Linda S. Wicker
We have used the public sequencing and annotation of the mouse genome to delimit the previously resolved type 1 diabetes (T1D) insulin-dependent diabetes (Idd)18 interval to a region on chromosome 3 that includes the immunologically relevant candidate gene, Vav3. To test the candidacy of Vav3, we developed a novel congenic strain that enabled the resolution of Idd18 to a 604-kb interval, designated Idd18.1, which contains only two annotated genes: the complete sequence of Vav3 and the last exon of the gene encoding NETRIN G1, Ntng1. Targeted sequencing of Idd18.1 in the NOD mouse strain revealed that allelic variation between NOD and C57BL/6J (B6) occurs in noncoding regions with 138 single nucleotide polymorphisms concentrated in the introns between exons 20 and 27 and immediately after the 3′ untranslated region. We observed differential expression of VAV3 RNA transcripts in thymocytes when comparing congenic mouse strains with B6 or NOD alleles at Idd18.1. The T1D protection associated with B6 alleles of Idd18.1/Vav3 requires the presence of B6 protective alleles at Idd3, which are correlated with increased IL-2 production and regulatory T cell function. In the absence of B6 protective alleles at Idd3, we detected a second T1D protective B6 locus, Idd18.3, which is closely linked to, but distinct from, Idd18.1. Therefore, genetic mapping, sequencing, and gene expression evidence indicate that alteration of VAV3 expression is an etiological factor in the development of autoimmune β-cell destruction in NOD mice. This study also demonstrates that a congenic strain mapping approach can isolate closely linked susceptibility genes.
Journal of Immunology | 2013
Marcin L. Pekalski; Ricardo C. Ferreira; Richard M. R. Coulson; Antony J. Cutler; Hui Guo; Deborah J. Smyth; Kate Downes; Calliope A. Dendrou; Xaquin Castro Dopico; Laura Esposito; Gillian Coleman; Helen Stevens; Sarah Nutland; Neil M Walker; Catherine Guy; David B. Dunger; Chris Wallace; Timothy Tree; John A. Todd; Linda S. Wicker
As the thymus involutes with age, the maintenance of peripheral naive T cells in humans becomes strongly dependent on peripheral cell division. However, mechanisms that orchestrate homeostatic division remain unclear. In this study we present evidence that the frequency of naive CD4 T cells that express CD25 (IL-2 receptor α-chain) increases with age on subsets of both CD31+ and CD31− naive CD4 T cells. Analyses of TCR excision circles from sorted subsets indicate that CD25+ naive CD4 T cells have undergone more rounds of homeostatic proliferation than their CD25− counterparts in both the CD31+ and CD31− subsets, indicating that CD25 is a marker of naive CD4 T cells that have preferentially responded to survival signals from self-Ags or cytokines. CD25 expression on CD25− naive CD4 T cells can be induced by IL-7 in vitro in the absence of TCR activation. Although CD25+ naive T cells respond to lower concentrations of IL-2 as compared with their CD25− counterparts, IL-2 responsiveness is further increased in CD31− naive T cells by their expression of the signaling IL-2 receptor β-chain CD122, forming with common γ-chain functional high-affinity IL-2 receptors. CD25 plays a role during activation: CD25+ naive T cells stimulated in an APC-dependent manner were shown to produce increased levels of IL-2 as compared with their CD25− counterparts. This study establishes CD25+ naive CD4 T cells, which are further delineated by CD31 expression, as a major functionally distinct immune cell subset in humans that warrants further characterization in health and disease.
Science Translational Medicine | 2016
Calliope A. Dendrou; Adrian Cortes; Lydia Shipman; Hayley G. Evans; Kathrine E. Attfield; Luke Jostins; Thomas Barber; Gurman Kaur; Subita Balaram Kuttikkatte; Oliver A. Leach; Christiane Desel; Soren L. Faergeman; Jane Cheeseman; Matt Neville; Stephen Sawcer; Alastair Compston; Adam R. Johnson; Christine Everett; John I. Bell; Fredrik Karpe; Mark Ultsch; Charles Eigenbrot; Gil McVean; Lars Fugger
Resolving TYK2 locus genotype-to-phenotype differences reveals an immune signaling optimum that may be exploited therapeutically for treating autoimmune diseases. TYK2’s balancing act Determining the biological consequences of the thousands of genetic variants that contribute to common diseases for the purpose of improving health care is challenging. Genetic variants that influence autoimmune diseases have been identified in the tyrosine kinase 2 (TYK2) gene, but conflicting evidence regarding their biological impact obscures the therapeutic potential of TYK2. By resolving this conflict, Dendrou et al. have revealed a genetic effect that drives an optimal degree of immune signaling: low enough to be protective against autoimmunity but high enough to prevent immunodeficiency. These findings indicate that TYK2 may be a potential drug target in a number of autoimmune conditions. Thousands of genetic variants have been identified, which contribute to the development of complex diseases, but determining how to elucidate their biological consequences for translation into clinical benefit is challenging. Conflicting evidence regarding the functional impact of genetic variants in the tyrosine kinase 2 (TYK2) gene, which is differentially associated with common autoimmune diseases, currently obscures the potential of TYK2 as a therapeutic target. We aimed to resolve this conflict by performing genetic meta-analysis across disorders; subsequent molecular, cellular, in vivo, and structural functional follow-up; and epidemiological studies. Our data revealed a protective homozygous effect that defined a signaling optimum between autoimmunity and immunodeficiency and identified TYK2 as a potential drug target for certain common autoimmune disorders.
Nature Communications | 2017
Gurman Kaur; Stephanie Gras; Jesse I. Mobbs; Julian P. Vivian; Adrian Cortes; Thomas M. Barber; Subita Balaram Kuttikkatte; Lise T. Jensen; Kathrine E. Attfield; Calliope A. Dendrou; Mary Carrington; Gil McVean; Anthony W. Purcell; Jamie Rossjohn; Lars Fugger
Expression of HLA-C varies widely across individuals in an allele-specific manner. This variation in expression can influence efficacy of the immune response, as shown for infectious and autoimmune diseases. MicroRNA binding partially influences differential HLA-C expression, but the additional contributing factors have remained undetermined. Here we use functional and structural analyses to demonstrate that HLA-C expression is modulated not just at the RNA level, but also at the protein level. Specifically, we show that variation in exons 2 and 3, which encode the α1/α2 domains, drives differential expression of HLA-C allomorphs at the cell surface by influencing the structure of the peptide-binding cleft and the diversity of peptides bound by the HLA-C molecules. Together with a phylogenetic analysis, these results highlight the diversity and long-term balancing selection of regulatory factors that modulate HLA-C expression.