Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Fugger is active.

Publication


Featured researches published by Lars Fugger.


Nature Immunology | 2002

A functional and structural basis for TCR cross-reactivity in multiple sclerosis

Heather L.E. Lang; Helle Jacobsen; Shinji Ikemizu; Christina Andersson; Karl Harlos; Lars Madsen; Peter Hjorth; Leif Sondergaard; Arne Svejgaard; Kai W. Wucherpfennig; David I. Stuart; John I. Bell; E. Yvonne Jones; Lars Fugger

The multiple sclerosis (MS)-associated HLA major histocompatibility complex (MHC) class II alleles DRB1*1501, DRB5*0101 and DQB1*0602 are in strong linkage disequilibrium, making it difficult to determine which is the principal MS risk gene. Here we show that together the DRB1 and DRB5 loci may influence susceptibility to MS. We demonstrate that a T cell receptor (TCR) from an MS patient recognized both a DRB1*1501-restricted myelin basic protein (MBP) and DRB5*0101-restricted Epstein-Barr virus (EBV) peptide. Crystal structure determination of the DRB5*0101-EBV peptide complex revealed a marked degree of structural equivalence to the DRB1*1501–MBP peptide complex at the surface presented for TCR recognition. This provides structural evidence for molecular mimicry involving HLA molecules. The structural details suggest an explanation for the preponderance of MHC class II associations in HLA-associated diseases.


Nature Reviews Immunology | 2015

Immunopathology of multiple sclerosis.

Calliope A. Dendrou; Lars Fugger; Manuel A. Friese

Two decades of clinical experience with immunomodulatory treatments for multiple sclerosis point to distinct immunological pathways that drive disease relapses and progression. In light of this, we discuss our current understanding of multiple sclerosis immunopathology, evaluate long-standing hypotheses regarding the role of the immune system in the disease and delineate key questions that are still unanswered. Recent and anticipated advances in the field of immunology, and the increasing recognition of inflammation as an important component of neurodegeneration, are shaping our conceptualization of disease pathophysiology, and we explore the potential implications for improved healthcare provision to patients in the future.


Nature Genetics | 1999

A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor

Lars Madsen; Ellen Christina Andersson; Liselotte Jansson; Michelle Krogsgaard; Claus B. Andersen; Jan Engberg; Jack L. Strominger; Arne Svejgaard; Jens Hjorth; Rikard Holmdahl; Kai W. Wucherpfennig; Lars Fugger

Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development is less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 84–102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84–102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells.


Nature Medicine | 2007

Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system

Manuel A. Friese; M Craner; Ruth Etzensperger; Sandra Vergo; John A. Wemmie; Michael J. Welsh; Angela Vincent; Lars Fugger

Multiple sclerosis is a neuroinflammatory disease associated with axonal degeneration. The neuronally expressed, proton-gated acid-sensing ion channel-1 (ASIC1) is permeable to Na+ and Ca2+, and excessive accumulation of these ions is associated with axonal degeneration. We tested the hypothesis that ASIC1 contributes to axonal degeneration in inflammatory lesions of the central nervous system (CNS). After induction of experimental autoimmune encephalomyelitis (EAE), Asic1−/− mice showed both a markedly reduced clinical deficit and reduced axonal degeneration compared to wild-type mice. Consistently with acidosis-mediated injury, pH measurements in the spinal cord of EAE mice showed tissue acidosis sufficient to open ASIC1. The acidosis-related protective effect of Asic1 disruption was also observed in nerve explants in vitro. Amiloride, a licensed and clinically safe blocker of ASICs, was equally neuroprotective in nerve explants and in EAE. Although ASICs are also expressed by immune cells, this expression is unlikely to explain the neuroprotective effect of Asic1 inactivation, as CNS inflammation was similar in wild-type and Asic1−/− mice. In addition, adoptive transfer of T cells from wild-type mice did not affect the protection mediated by Asic1 disruption. These results suggest that ASIC1 blockers could provide neuroprotection in multiple sclerosis.


Nature Reviews Immunology | 2006

MHC class II proteins and disease: a structural perspective

E. Yvonne Jones; Lars Fugger; Jack L. Strominger; Christian Siebold

MHC class II molecules on the surface of antigen-presenting cells display a range of peptides for recognition by the T-cell receptors of CD4+ T helper cells. Therefore, MHC class II molecules are central to effective adaptive immune responses, but conversely, genetic and epidemiological data have implicated these molecules in the pathogenesis of autoimmune diseases. Indeed, the strength of the associations between particular MHC class II alleles and disease render them the main genetic risk factors for autoimmune disorders such as type 1 diabetes. Here, we discuss the insights that the crystal structures of MHC class II molecules provide into the molecular mechanisms by which sequence polymorphisms might contribute to disease susceptibility.


Neuron | 2006

Tandem-Pore K+ Channels Mediate Inhibition of Orexin Neurons by Glucose

Denis Burdakov; Lise T. Jensen; Haris Alexopoulos; Rhiannan H. Williams; Ian M. Fearon; Ita O'Kelly; Oleg Vsevolodovich Gerasimenko; Lars Fugger; Alexei Verkhratsky

Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself. These results reveal an unexpected energy-sensing pathway in neurons that regulate states of consciousness and energy balance.


Immunity | 2010

Constitutively Active Lck Kinase in T Cells Drives Antigen Receptor Signal Transduction

Konstantina Nika; Cristiana Soldani; Mogjiborahman Salek; Wolfgang Paster; Adrian Gray; Ruth Etzensperger; Lars Fugger; Paolo Polzella; Vincenzo Cerundolo; Omer Dushek; Thomas Höfer; Antonella Viola; Oreste Acuto

Summary T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to ∼40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site. Formation of activated Lck was independent of TCR and coreceptors but required Lck catalytic activity and its maintenance relied on monitoring by the HSP90-CDC37 chaperone complex to avoid degradation. The amount of activated Lck did not change after TCR and coreceptor engagement; however it determined the extent of TCR-ζ phosphorylation. Our findings suggest a dynamic regulation of Lck activity that can be promptly utilized to initiate T cell activation and have implications for signaling by other immune receptors.


Nature | 2012

TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis.

Adam Patrick Gregory; Calliope A. Dendrou; Kathrine E. Attfield; Aiden Haghikia; Dionysia K. Xifara; Falk Butter; Gereon Poschmann; Gurman Kaur; Lydia Lambert; Oliver A. Leach; Simone Prömel; Divya Punwani; James H. Felce; Simon J. Davis; Ralf Gold; Finn C. Nielsen; Richard M. Siegel; Matthias Mann; John I. Bell; Gil McVean; Lars Fugger

Although there has been much success in identifying genetic variants associated with common diseases using genome-wide association studies (GWAS), it has been difficult to demonstrate which variants are causal and what role they have in disease. Moreover, the modest contribution that these variants make to disease risk has raised questions regarding their medical relevance. Here we have investigated a single nucleotide polymorphism (SNP) in the TNFRSF1A gene, that encodes tumour necrosis factor receptor 1 (TNFR1), which was discovered through GWAS to be associated with multiple sclerosis (MS), but not with other autoimmune conditions such as rheumatoid arthritis, psoriasis and Crohn’s disease. By analysing MS GWAS data in conjunction with the 1000 Genomes Project data we provide genetic evidence that strongly implicates this SNP, rs1800693, as the causal variant in the TNFRSF1A region. We further substantiate this through functional studies showing that the MS risk allele directs expression of a novel, soluble form of TNFR1 that can block TNF. Importantly, TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven highly efficacious in the treatment of autoimmune diseases for which there is no association with rs1800693. This indicates that the clinical experience with these drugs parallels the disease association of rs1800693, and that the MS-associated TNFR1 variant mimics the effect of TNF-blocking drugs. Hence, our study demonstrates that clinical practice can be informed by comparing GWAS across common autoimmune diseases and by investigating the functional consequences of the disease-associated genetic variation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Control of hypothalamic orexin neurons by acid and CO2.

Rhı̂annan H. Williams; Lise T. Jensen; Alex Verkhratsky; Lars Fugger; Denis Burdakov

Hypothalamic orexin/hypocretin neurons recently emerged as key orchestrators of brain states and adaptive behaviors. They are critical for normal stimulation of wakefulness and breathing: Orexin loss causes narcolepsy and compromises vital ventilatory adaptations. However, it is unclear how orexin neurons generate appropriate adjustments in their activity during changes in physiological circumstances. Extracellular levels of acid and CO2 are fundamental physicochemical signals controlling wakefulness and breathing, but their effects on the firing of orexin neurons are unknown. Here we show that the spontaneous firing rate of identified orexin neurons is profoundly affected by physiological fluctuations in ambient levels of H+ and CO2. These responses resemble those of known chemosensory neurons both qualitatively (acidification is excitatory, alkalinization is inhibitory) and quantitatively (≈100% change in firing rate per 0.1 unit change in pHe). Evoked firing of orexin cells is similarly modified by physiologically relevant changes in pHe: Acidification increases intrinsic excitability, whereas alkalinization depresses it. The effects of pHe involve acid-induced closure of leak-like K+ channels in the orexin cell membrane. These results suggest a new mechanism of how orexin/hypocretin networks generate homeostatically appropriate firing patterns.


Nature Reviews Neurology | 2014

Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis

Manuel A. Friese; Benjamin Schattling; Lars Fugger

Multiple sclerosis (MS) is the most frequent chronic inflammatory disease of the CNS, and imposes major burdens on young lives. Great progress has been made in understanding and moderating the acute inflammatory components of MS, but the pathophysiological mechanisms of the concomitant neurodegeneration—which causes irreversible disability—are still not understood. Chronic inflammatory processes that continuously disturb neuroaxonal homeostasis drive neurodegeneration, so the clinical outcome probably depends on the balance of stressor load (inflammation) and any remaining capacity for neuronal self-protection. Hence, suitable drugs that promote the latter state are sorely needed. With the aim of identifying potential novel therapeutic targets in MS, we review research on the pathological mechanisms of neuroaxonal dysfunction and injury, such as altered ion channel activity, and the endogenous neuroprotective pathways that counteract oxidative stress and mitochondrial dysfunction. We focus on mechanisms inherent to neurons and their axons, which are separable from those acting on inflammatory responses and might, therefore, represent bona fide neuroprotective drug targets with the capability to halt MS progression.

Collaboration


Dive into the Lars Fugger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Svejgaard

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Niels Morling

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

M Craner

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John I. Bell

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Jan Engberg

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge