Calvin M. Stewart
University of Texas at El Paso
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Calvin M. Stewart.
Scientific Reports | 2016
Binata Joddar; Eduardo Garcia; Atzimba Casas; Calvin M. Stewart
Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.
Journal of Pressure Vessel Technology-transactions of The Asme | 2009
Calvin M. Stewart; Ali P. Gordon
To capture the mechanical response of Ni-based materials, creep deformation and rupture experiments are typically performed. Long term tests, mimicking service conditions at 10,000 h or more, are generally avoided due to expense. Phenomenological models such as the classical Kachanov–Rabotnov (Rabotnov, 1969, Creep Problems in Structural Members, North-Holland, Amsterdam; Kachanov, 1958, “Time to Rupture Process Under Creep Conditions,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekh. Mashin., 8, pp. 26–31) model can accurately estimate tertiary creep damage over extended histories. Creep deformation and rupture experiments are conducted on IN617 a polycrystalline Ni-based alloy over a range of temperatures and applied stresses. The continuum damage model is extended to account for temperature dependence. This allows the modeling of creep deformation at temperatures between available creep rupture data and the design of full-scale parts containing temperature distributions. Implementation of the Hayhurst (1983, “On the Role of Continuum Damage on Structural Mechanics ,” in Engineering Approaches to High Temperature Design, Pineridge, Swansea, pp. 85–176) (tri-axial) stress formulation introduces tensile/compressive asymmetry to the model. This allows compressive loading to be considered for compression loaded gas turbine components such as transition pieces. A new dominant deformation approach is provided to predict the dominant creep mode over time. This leads to development of a new methodology for determining the creep stage and strain of parametric stress and temperature simulations over time.
Journal of Pressure Vessel Technology-transactions of The Asme | 2011
Calvin M. Stewart; Ali P. Gordon; Young Wha Ma
Directionally solidified (DS) Ni-base superalloys are commonly used as gas turbine materials to primarily extend the operational lives of components under high load and temperature. The nature of DS superalloy grain structure facilitates an elongated grain orientation, which exhibits enhanced impact strength, high temperature creep and fatigue resistance, and improved corrosion resistance compared with off-axis orientations. Of concern to turbine designers are the effects of cyclic fatigue, thermal gradients, and potential stress concentrations when dealing with orientation-dependent materials. When coupled with a creep environment, accurate prediction of crack initiation and propagation becomes highly dependent on the quality of the constitutive damage model implemented. This paper describes the development of an improved anisotropic tertiary creep damage model implemented in a general-purpose finite element analysis software. The creep damage formulation is a tensorial extension of a variation in the Kachanov– Rabotnov isotropic tertiary creep damage formulation. The net/effective stress arises from the use of the Rabotnov second-rank symmetric damage tensor. The Hill anisotropic behavior analogy is used to model secondary creep and tertiary creep damage behaviors. Using available experimental data for a directionally solidified Ni-base superalloy, the improved formulation is found to accurately model intermediate oriented specimen. DOI: 10.1115/1.4002497
Journal of Engineering Materials and Technology-transactions of The Asme | 2011
Calvin M. Stewart; Ali P. Gordon; Erik A. Hogan; Ashok Saxena
Creep deforrnation and rupture experiments are conducted on samples of the Ni-base superalloy directionally solidifies GTD-111 tested at temperatures between 649°C and 982°C and two orientations (longitudinally and transversely oriented). The secondary creep constants are analytically determined from creep deformation experiments. The classical Kachanov―Rabotnov model for tertiary creep damage is implemented in a general-purpose finite element analysis (FEA) software. The simulated annealing optimization routine is utilized in conjunction with the FEA implementation to determine the creep damage constants. A comparison of FEA and creep deformation data demonstrates high accuracy. Using regression analysis, the creep constants are characterized for temperature dependence. A rupture prediction model derived from creep damage evolution is compared with rupture experiments.
ASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010 | 2010
James DeMarco; Erik A. Hogan; Calvin M. Stewart; Ali P. Gordon
Constitutive modeling has proven useful in providing accurate predictions of material response in components subjected to a variety of operating conditions; however, the high number of experiments necessary to determine appropriate constants for a model can be prohibitive, especially for more expensive materials. Generally, up to twenty experiments simulating a range of conditions are needed to identify the material parameters for a model. In this paper, an automated process for optimizing the material constants of the Miller constitutive model for uniaxial modeling is introduced. The use of more complex stress, strain, and temperature histories than are traditionally used allows for the effects of all material parameters to be captured using significantly fewer tests. A graphical user interface known as uSHARP was created to implement the resulting method, which determines the material constants of a viscoplastic model using a minimum amount of experimental data. By carrying out successive finite element simulations and comparing the results to simulated experimental test data, both with and without random noise, the material constants were determined from 75% fewer experiments. The optimization method introduced here reduces the cost and time necessary to determine constitutive model constants through experimentation. Thus it allows for a more widespread application of advanced constitutive models in industry and for better life prediction modeling of critical components in high-temperature applications.Copyright
ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010 | 2010
Calvin M. Stewart; Ali P. Gordon
The classic Kachanov-Rabotnov isotropic creep damage constitutive model has been used in many situations to predict the creep deformation of high temperature components. Typically, the secondary creep behavior is determined by analytical methods; however, the tertiary creep damage constants are found using a mixture of trial and error and numerical optimization. These methods require substantial hand calculations and computational time to determine the tertiary creep damage constants. In this paper, a novel analytical method is developed to determine the tertiary creep damage constants. Comparisons between numerical optimized constants and those found using the analytical method are given for a Ni-based superalloy. Creep deformation, damage evolution, and rupture time predictions are compared. A detailed discussion of the analytical method is given.Copyright
ASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009 | 2009
Calvin M. Stewart; Erik A. Hogan; Ali P. Gordon
Directionally solidified (DS) Ni-base superalloys have become a commonly used material in gas turbine components. Controlled solidification during the material manufacturing process leads to a special alignment of the grain boundaries within the material. This alignment results in different material properties dependent on the orientation of the material. When used in gas turbine applications the direction of the first principle stress experienced by a component is aligned with the enhanced grain orientation leading to enhanced impact strength, high temperature creep and fatigue resistance, and improve corrosion resistance compared to off axis orientations. Of particular importance is the creep response of these DS materials. In the current study, the classical Kachanov-Rabotnov model for tertiary creep damage is implemented in a general-purpose finite element analysis (FEA) software. Creep deformation and rupture experiments are conducted on samples from a representative DS Ni-base superalloys tested at temperatures between 649 and 982°C and two orientations (longitudinally- and transversely-oriented). The secondary creep constants are analytically determined from available experimental data in literature. The simulated annealing optimization routine is utilized to determine the tertiary creep constants. Using regression analysis the creep constants are characterized for temperature and stress-dependence. A rupture time estimation model derived from the Kachanov-Rabotnov model is then parametrically exercised and compared with available experimental data.Copyright
47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2009
Calvin M. Stewart; Ali P. Gordon; David Nicholson
Directionally -solidified (DS) Ni -base superalloys are commonly applied as turbine materials to primarily withstand creep conditions manifested in either marine -, air - or land based gas turbines components. The thrust for increased efficiency of these syste ms, however, translates into the need for these materials to exhibit considerable strength and temperature resistance. Accurate prediction of crack initiation behavior of these hot gas path components is an on -going challenge for turbine designers. Aside from the spectrum of mechanical loading, blades and vanes are subjected to high temperature cycling and thermal gradients. Imposing repeated start -up and shut -down steps leads to creep and fatigue damage. The presence of s tress concentrations due to cooli ng holes , edges, and sites sustain foreign object damage must also be taken into account. These issues and the interaction thereof can be mitigated with the application of high fidelity constitutive models implemented to predict material response under giv en thermomechanical loading history. In the current study, the classical Kachanov -Rabotnov model for tertiary creep damage is implemented in a general -purpose finite element analysis (FEA) software. The evolution of damage is considered as a vector -valued quantity to account for orientation -dependent damage accumulation. Creep deformation and rupture experiments on samples from a representative DS Ni -base superalloys tested at temperatures between 649 and 982°C and three o rientations (longitudinally -, tran sversely -oriented , and intermediately oriented ). The damage model coefficients corresponding to secondary and tertiary creep constants are characterized for temperature and orientation dependence. This advanced formulation can be implemented for modeling f ull -scale parts containing temperature gradients .
Journal of Pressure Vessel Technology-transactions of The Asme | 2012
Calvin M. Stewart; Ali P. Gordon
In the pressure vessel and piping and power industries, creep deformation has continued to be an important design consideration. Directionally solidified components have become commonplace. Creep deformation and damage is a common source of component failure. A considerable effort has gone into the study and development of constitutive models to account for such behavior. Creep deformation can be separated into three distinct regimes: primary, secondary, and tertiary. Most creep damage constitutive models are designed to model only one or two of these regimes. In this paper, a multistage creep damage constitutive model is developed and designed to model all three regimes of creep for isotropic materials. A rupture and critical damage prediction method follows. This constitutive model is then extended for transversely isotropic materials. In all cases, the influence of creep damage on general elasticity (elastic damage) is included. Methods to determine material constants from experimental data are detailed. Finally, the isotropic material model is exercised on tough pitch copper tube and the anisotropic model on a Ni-based superalloy. [DOI: 10.1115/1.4005946]
International Journal of Damage Mechanics | 2012
Calvin M. Stewart; Ali P. Gordon
In the power generation industry, the goal of increased gas turbine efficiency has led to increased operating temperatures and pressures necessitating nickel-base superalloy components. Under these conditions, the tertiary creep regime can become the dominant form of creep deformation. In response, the classical Kachanov–Rabotnov coupled creep-damage constitutive model is often used to predict the creep deformation and damage of Ni-base superalloys. In this model, the secondary creep behavior can be determined through analytical methods while the tertiary creep behavior is often found using trial and error or numerical optimization. Trial and error may produce no constants. Numerical optimization can be computationally expensive. In this study, a strain-based and damage-based approach to determine the tertiary creep behavior of nickel-base superalloys has been developed. Analytically determined constants are found for a given nickel-base superalloy. Creep deformation and damage evolution curves are compared. Methods to deal with stress dependence are introduced and studied.