Camelia Quek
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camelia Quek.
Proteomics | 2015
Mohashin Pathan; Shivakumar Keerthikumar; Ching-Seng Ang; Lahiru Gangoda; Camelia Quek; Nicholas A. Williamson; Dmitri Mouradov; Oliver M. Sieber; Richard J. Simpson; Agus Salim; Antony Bacic; Andrew F. Hill; David A. Stroud; Michael T. Ryan; Johnson I. Agbinya; John M. Mariadason; Antony W. Burgess; Suresh Mathivanan
As high‐throughput techniques including proteomics become more accessible to individual laboratories, there is an urgent need for a user‐friendly bioinformatics analysis system. Here, we describe FunRich, an open access, standalone functional enrichment and network analysis tool. FunRich is designed to be used by biologists with minimal or no support from computational and database experts. Using FunRich, users can perform functional enrichment analysis on background databases that are integrated from heterogeneous genomic and proteomic resources (>1.5 million annotations). Besides default human specific FunRich database, users can download data from the UniProt database, which currently supports 20 different taxonomies against which enrichment analysis can be performed. Moreover, the users can build their own custom databases and perform the enrichment analysis irrespective of organism. In addition to proteomics datasets, the custom database allows for the tool to be used for genomics, lipidomics and metabolomics datasets. Thus, FunRich allows for complete database customization and thereby permits for the tool to be exploited as a skeleton for enrichment analysis irrespective of the data type or organism used. FunRich (http://www.funrich.org) is user‐friendly and provides graphical representation (Venn, pie charts, bar graphs, column, heatmap and doughnuts) of the data with customizable font, scale and color (publication quality).
Frontiers in Genetics | 2013
Lesley Cheng; Camelia Quek; Xin Sun; Shayne A. Bellingham; Andrew F. Hill
Diagnostic tools for neurodegenerative diseases such as Alzheimers disease (AD) currently involve subjective neuropsychological testing and specialized brain imaging techniques. While definitive diagnosis requires a pathological brain evaluation at autopsy, neurodegenerative changes are believed to begin years before the clinical presentation of cognitive decline. Therefore, there is an essential need for reliable biomarkers to aid in the early detection of disease in order to implement preventative strategies. microRNAs (miRNA) are small non-coding RNA species that are involved in post-transcriptional gene regulation. Expression levels of miRNAs have potential as diagnostic biomarkers as they are known to circulate and tissue specific profiles can be identified in a number of bodily fluids such as plasma, CSF and urine. Recent developments in deep sequencing technology present a viable approach to develop biomarker discovery pipelines in order to profile miRNA signatures in bodily fluids specific to neurodegenerative diseases. Here we review the potential use of miRNA deep sequencing in biomarker identification from biological fluids and its translation into clinical practice.
Biochemical and Biophysical Research Communications | 2017
Camelia Quek; Andrew F. Hill
Extracellular vesicles, including exosomes, are small membranous vesicles released from many biotypes, contributing to the disease progression and spreading. These extracellular vesicles provide an important mode of cell-to-cell communication by delivering proteins, lipids and RNA to target cells. Exosomes are found associated with neurodegenerative diseases, which are characterised by progressive degeneration of neurons and often associated with misfolded protein. The common diseases include Parkinsons disease (PD), Alzheimers diseases (AD), amyotrophic lateral sclerosis (ALS), and the prion diseases. Of all neurodegenerative diseases, prion diseases are classified as the distinctive group owing to its transmissible and infectious nature of misfolded prion protein. The infectious prion particles have been demonstrated to be present in exosomes to spread prion infectivity within cells. Similarly, misfolded proteins involved in other neurodegenerative diseases such as Amyloid-β and tau in AD, α-synuclein in PD, and superoxide dismutase 1 in ALS have been demonstrated to exploit exosomes for induced spreading of misfolded proteins in a prion-like mechanism. Furthermore, RNA molecules can be taken up by the recipient cells as cargo in exosomes. These RNAs can module the expression of the target genes by repressing or inhibiting protein translation. Here we review the role of exosomes in prion diseases and other common neurodegenerative diseases, and discuss the potential of these vesicles for disease pathogenesis.
Clinical Cancer Research | 2018
Jarem Edwards; James S. Wilmott; Jason Madore; Tuba Nur Gide; Camelia Quek; Annie Tasker; Angela Ferguson; Jinbiao Chen; Rehana Hewavisenti; Peter Hersey; Thomas Gebhardt; Wolfgang Weninger; Warwick J. Britton; Robyn P. M. Saw; John F. Thompson; Alexander M. Menzies; Richard A. Scolyer; Umaimainthan Palendira
Purpose: Therapeutic blockade of immune checkpoints has revolutionized cancer treatment. Durable responses, however, occur in less than half of those treated, and efforts to improve treatment efficacy are confounded by a lack of understanding of the characteristics of the cells that initiate antitumor immune response. Patients and Methods: We performed multiparameter flow cytometry and quantitative multiplex immunofluorescence staining on tumor specimens from immunotherapy-naïve melanoma patients and longitudinal biopsy specimen obtained from patients undergoing anti–PD-1 therapy. Results: Increased numbers of CD69+CD103+ tumor-resident CD8+ T cells were associated with improved melanoma-specific survival in immunotherapy-naïve melanoma patients. Local IL15 expression levels strongly correlated with these tumor-resident T-cell numbers. The expression of several immune checkpoints including PD-1 and LAG3 was highly enriched in this subset, and these cells significantly expanded early during anti–PD-1 immunotherapy. Conclusions: Tumor-resident CD8+ T-cell numbers are more prognostic than total CD8+ T cells in metastatic melanoma. In addition, they are likely to initiate response to anti–PD-1 and anti–LAG-3 treatments. We propose that the immune profile of these cells prior to treatment could inform strategies for immune checkpoint blockade. Clin Cancer Res; 24(13); 3036–45. ©2018 AACR.
RNA Biology | 2017
Camelia Quek; Shayne A. Bellingham; Chol-Hee Jung; Benjamin J. Scicluna; Mitch Shambrook; Robyn A. Sharples; Lesley Cheng; Andrew F. Hill
ABSTRACT Small non-coding RNAs (ncRNA), including microRNAs (miRNA), enclosed in exosomes are being utilised for biomarker discovery in disease. Two common exosome isolation methods involve differential ultracentrifugation or differential ultracentrifugation coupled with Optiprep gradient fractionation. Generally, the incorporation of an Optiprep gradient provides better separation and increased purity of exosomes. The question of whether increased purity of exosomes is required for small ncRNA profiling, particularly in diagnostic and biomarker purposes, has not been addressed and highly debated. Utilizing an established neuronal cell system, we used next-generation sequencing to comprehensively profile ncRNA in cells and exosomes isolated by these 2 isolation methods. By comparing ncRNA content in exosomes from these two methods, we found that exosomes from both isolation methods were enriched with miRNAs and contained a diverse range of rRNA, small nuclear RNA, small nucleolar RNA and piwi-interacting RNA as compared with their cellular counterparts. Additionally, tRNA fragments (30–55 nucleotides in length) were identified in exosomes and may act as potential modulators for repressing protein translation. Overall, the outcome of this study confirms that ultracentrifugation-based method as a feasible approach to identify ncRNA biomarkers in exosomes.
Journal of extracellular vesicles | 2015
Camelia Quek; Chol-Hee Jung; Shayne A. Bellingham; Andrew Lonie; Andrew F. Hill
Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.
F1000Research | 2016
Camelia Quek; Son T. Pham; Kieu T. Tran; Binh T. Pham; Loc V. Huynh; Ngan B.L. Luu; Thao K.T. Le; Kelly Quek; Van Hung Pham
Helicobacter pylori is a gastric pathogen that causes several gastroduodenal disorders such as peptic ulcer disease and gastric cancer. Eradication efforts of H. pylori are often hampered by antimicrobial resistance in many countries, including Vietnam. Here, the study aimed to investigate the occurrence of antimicrobial resistance among H. pylori clinical isolates across 13 hospitals in Vietnam. The study further evaluated the clarithromycin resistance patterns of H. pylori strains. In order to address the study interests, antimicrobial susceptibility testing, epsilometer test and PCR-based sequencing were performed on a total of 193 strains isolated from patients, including 136 children (3–15 years of age) and 57 adults (19–69 years of age). Antimicrobial susceptibility testing showed that the overall resistance to amoxicillin, clarithromycin, levofloxacin, metronidazole, and tetracycline was 10.4%, 85.5%, 24.4%, 37.8%, and 23.8% respectively. The distribution of minimum inhibitory concentrations (MICs) of clarithromycin-resistant strains was 85.5% with MIC >0.5 μg/mL. The majority of the clarithromycin resistant isolates (135 of 165 subjects) have MICs ranging from 2 μg/mL to 16 μg/mL. Furthermore, sequencing detection of mutations in 23S rRNA gene revealed that strains resistant and susceptible to clarithromycin contained both A2143G and T2182C mutations. Of all isolates, eight clarithromycin-resistant isolates (MIC >0.5 μg/mL) had no mutations in the 23S rRNA gene. Collectively, these results demonstrated that a proportion of clarithromycin-resistant H. pylori strains, which are not related to the 23S rRNA gene mutations, could be potentially related to other mechanisms such as the presence of an efflux pump or polymorphisms in the CYP2C19 gene. Therefore, the present study suggests that providing susceptibility testing prior to treatment or alternative screening strategies for antimicrobial resistance is important for future clinical practice. Further studies on clinical guidelines and treatment efficacy are pivotal for successful eradication of H. pylori infection.
Scientific Reports | 2016
Lesley Cheng; Camelia Quek; Lin W. Hung; Robyn A. Sharples; Nicki A. Sherratt; Kevin J. Barnham; Andrew F. Hill
The administration of MPTP selectively targets the dopaminergic system resulting in Parkinsonism-like symptoms and is commonly used as a mice model of Parkinson’s disease. We previously demonstrated that the neuroprotective compound CuII(atsm) rescues nigral cell loss and improves dopamine metabolism in the MPTP model. The mechanism of action of CuII(atsm) needs to be further defined to understand how the compound promotes neuronal survival. Whole genome transcriptomic profiling has become a popular method to examine the relationship between gene expression and function. Substantia nigra samples from MPTP-lesioned mice were evaluated using whole transcriptome sequencing to investigate the genes altered upon CuII(atsm) treatment. We identified 143 genes affected by MPTP lesioning that are associated with biological processes related to brain and cognitive development, dopamine synthesis and perturbed synaptic neurotransmission. Upon CuII(atsm) treatment, the expression of 40 genes involved in promoting dopamine synthesis, calcium signaling and synaptic plasticity were restored which were validated by qRT-PCR. The study provides the first detailed whole transcriptomic analysis of pathways involved in MPTP-induced Parkinsonism. In addition, we identify key therapeutic pathways targeted by a potentially new class of neuroprotective agents which may provide therapeutic benefits for other neurodegenerative disorders.
International Journal of Cancer | 2018
James S. Wilmott; Peter A. Johansson; Felicity Newell; Nicola Waddell; Peter C. Ferguson; Camelia Quek; Ann-Marie Patch; Katia Nones; Ping Shang; Antonia L. Pritchard; Stephen Kazakoff; Oliver Holmes; Conrad Leonard; Scott Wood; Qinying Xu; Robyn P. M. Saw; Andrew J. Spillane; Jonathan R. Stretch; Kerwin Shannon; Richard F. Kefford; Alexander M. Menzies; John F. Thompson; John V. Pearson; Graham J. Mann; Nicholas K. Hayward; Richard A. Scolyer
Cutaneous melanoma accounts for at least >10% of all cancers in adolescents and young adults (AYA, 15–30 years of age) in Western countries. To date, little is known about the correlations between germline variants and somatic mutations and mutation signatures in AYA melanoma patients that might explain why they have developed a cancer predominantly affecting those over 65 years of age. We performed genomic analysis of 50 AYA melanoma patients (onset 10–30 years, median 20); 25 underwent whole genome sequencing (WGS) of both tumor and germline DNA, exome data were retrieved from 12 TCGA AYA cases, and targeted DNA sequencing was conducted on 13 cases. The AYA cases were compared with WGS data from 121 adult cutaneous melanomas. Similar to mature adult cutaneous melanomas, AYA melanomas showed a high mutation burden and mutation signatures of ultraviolet radiation (UVR) damage. The frequencies of somatic mutations in BRAF (96%) and PTEN (36%) in the AYA WGS cohort were double the rates observed in adult melanomas (Q < 6.0 × 10−6 and 0.028, respectively). Furthermore, AYA melanomas contained a higher proportion of non‐UVR‐related mutation signatures than mature adult melanomas as a proportion of total mutation burden (p = 2.0 × 10−4). Interestingly, these non‐UVR mutation signatures relate to APOBEC or mismatch repair pathways, and germline variants in related genes were observed in some of these cases. We conclude that AYA melanomas harbor some of the same molecular aberrations and mutagenic insults occurring in older adults, but in different proportions. Germline variants that may have conferred disease susceptibility correlated with somatic mutation signatures in a subset of AYA melanomas.
Journal of Hepatology | 2017
F. Lamoury; Behzad Hajarizadeh; Angelica Soker; Danica Martinez; Camelia Quek; Philip Cunningham; Beth Catlett; Gavin Cloherty; P. Marks; Janaki Amin; Jason Grebely; Gregory J. Dore; Tanya L. Applegate
Methods: Paired plasma and venous DBS samples were prepared from remnant diagnostic samples. Plasma HCV RNA was quantified by AmpliPrep/COBAS Taqman (Roche). HCVcAg were measured by ARCHITECT HCV Ag (Abbott Diagnostics). The agreement between both assays was assessed by Bland-Altman Bias plot (conversion factor, 1fmol/L = 500IU/mL). The sensitivity and specificity for the HCVcAg assay (>3fmol/L) at a threshold of HCV RNA>1000IU/mL were calculated for both plasma and DBS.