Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cameron M. Douglas is active.

Publication


Featured researches published by Cameron M. Douglas.


Antimicrobial Agents and Chemotherapy | 1994

Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase.

Myra B. Kurtz; I B Heath; Jean A. Marrinan; S Dreikorn; Janet C. Onishi; Cameron M. Douglas

The lipopeptide antifungal agents, echinocandins, papulacandins, and pneumocandins, kill Candida albicans by inhibiting glucan synthesis. For this fungus, there is a good correlation of in vitro enzyme inhibition with in vitro assays of MICs. Semisynthetic lipopeptides such as cilofungin, LY303366, L-693,989, and L-733,560 have activity in vivo against Aspergillus infections but appear to be inactive in broth dilution in vitro tests (MICs, > 128 micrograms/ml). To understand how compounds which lack activity in vitro can have good in vivo activity, we monitored the effect of pneumocandins on the morphology of Aspergillus fumigatus and A, flavus strains by light microscopy and electron microscopy and related the changes in growth to inhibition of glucan synthesis. Pneumocandin B0 caused profound changes in hyphal growth; light micrographs showed abnormally swollen germ tubes, highly branched hyphal tips, and many cells with distended balloon shapes. Aspergillus electron micrographs confirmed that lipopeptides produce changes in cell walls; drug-treated germlings showed very stubby growth with thick walls and a conspicuous dark outer layer which was much thicker in the subapical regions. The rest of the hyphal tip ultrastructure was unaffected by the drug, indicating considerable specificity for the primary target. The drug-induced growth alteration produced very compact clumps in broth dilution wells, making it possible to score the morphological effect macroscopically. The morphological changes could be assayed quantitatively by using conventional broth microdilution susceptibility assay conditions. We defined the endpoint as the lowest concentration required to produce the morphological effect and called it the minimum effective concentration to distinguish it from the no-growth endpoints used in MIC determinations. The minimum effective concentration assay was related to inhibition of glucan synthase activity in vitro and may provide a starting point for development of susceptibility testing methods for lipopeptides. Images


Antimicrobial Agents and Chemotherapy | 2000

Discovery of Novel Antifungal (1,3)-β-d-Glucan Synthase Inhibitors

Janet C. Onishi; Maria S. Meinz; J. Thompson; J. Curotto; S Dreikorn; M. Rosenbach; Cameron M. Douglas; George K. Abruzzo; Amy M. Flattery; Li Kong; A. Cabello; Francisca Vicente; Fernando Pelaez; M. T. Diez; I. Martin; Gerald F. Bills; Robert A. Giacobbe; Anne W. Dombrowski; Robert E. Schwartz; Sandra A. Morris; Guy H. Harris; A. Tsipouras; Kenneth E. Wilson; Myra B. Kurtz

ABSTRACT The increasing incidence of life-threatening fungal infections has driven the search for new, broad-spectrum fungicidal agents that can be used for treatment and prophylaxis in immunocompromised patients. Natural-product inhibitors of cell wall (1,3)-β-d-glucan synthase such as lipopeptide pneumocandins and echinocandins as well as the glycolipid papulacandins have been evaluated as potential therapeutics for the last two decades. As a result, MK-0991 (caspofungin acetate; Cancidas), a semisynthetic analogue of pneumocandin Bo, is being developed as a broad-spectrum parenteral agent for the treatment of aspergillosis and candidiasis. This and other lipopeptide antifungal agents have limited oral bioavailability. Thus, we have sought new chemical structures with the mode of action of lipopeptide antifungal agents but with the potential for oral absorption. Results of natural-product screening by a series of newly developed methods has led to the identification of four acidic terpenoid (1,3)-β-d-glucan synthase inhibitors. Of the four compounds, the in vitro antifungal activity of one, enfumafungin, is comparable to that of L-733560, a close analogue of MK-0991. Like the lipopeptides, enfumafungin specifically inhibits glucan synthesis in whole cells and in (1,3)-β-d-glucan synthase assays, alters the morphologies of yeasts and molds, and produces a unique response in Saccharomyces cerevisiae strains with point mutations in FKS1, the gene which encodes the large subunit of glucan synthase.


Medical Mycology | 1997

Lipopeptide inhibitors of fungal glucan synthase

M.B. Kurtz; Cameron M. Douglas

The echinocandins and pneumocandins are lipopeptide antifungal agents that inhibit the synthesis of 1,3-beta-D-glucan, an essential cell wall homopolysaccharide found in many pathogenic fungi. Compounds with this fungal-specific target have several attractive features: lack of mechanism-based toxicity, potential for fungicidal activity and activity against strains with intrinsic or acquired resistance mechanisms for existing antimycotics. Semi-synthetic analogues of naturally occurring lipopeptides are currently in clinical trials with the aim of treating systemic candidiasis and aspergillosis. Thus a fuller understanding of the target enzyme and its inhibition by these compounds should be useful for epidemiological and other clinical studies. Although it has been long known that lipopeptides inhibit fungal glucan synthase activity both in cell extracts and in whole cells, the genetic and biochemical identification of the proteins involved has been accomplished only recently. We now know that in Saccharomyces cerevisiae, glucan synthase is a heteromeric enzyme complex comprising one large integral membrane protein (specified by either FKS1 or by FKS2) and one small subunit more loosely associated with the membrane (specified by RHO1). Additional components may also be involved. The heteromeric enzyme complex containing Fks1p constitutes the majority of the activity found in vegetatively growing cells in this organism. The FKS2 gene product is needed for sporulation. Lipopeptides affect the function of the Fksp component from either FKS gene. The current model for interaction and regulation of these components in S. cerevisiae and the application to Candida albicans and other pathogenic fungi are discussed in this review.


Antimicrobial Agents and Chemotherapy | 2001

Quantitative PCR Assay To Measure Aspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate

Joel Bowman; George K. Abruzzo; J. W. Anderson; Amy M. Flattery; Charles Gill; V. B. Pikounis; Dennis M. Schmatz; Paul A. Liberator; Cameron M. Douglas

ABSTRACT Caspofungin acetate (MK-0991) is an antifungal antibiotic that inhibits the synthesis of 1,3-β-d-glucan, an essential component of the cell wall of several pathogenic fungi. Caspofungin acetate was recently approved for the treatment of invasive aspergillosis in patients who are refractory to or intolerant of other therapies. The activity of 1,3-β-d-glucan synthesis inhibitors against Aspergillus fumigatus has been evaluated in animal models of pulmonary or disseminated disease by using prolongation of survival or reduction in tissue CFU as assay endpoints. Because these methods suffer from limited sensitivity or poor correlation with fungal growth, we have developed a quantitative PCR-based (qPCR) (TaqMan) assay to monitor disease progression and measure drug efficacy. A. fumigatus added to naı̈ve, uninfected kidneys as either ungerminated conidia or small germlings yielded a linear qPCR response over at least 4 orders of magnitude. In a murine model of disseminated aspergillosis, a burden of A. fumigatus was detected in each of five different organs at 4 days postinfection by the qPCR assay, and the mean fungal load in these organs was 1.2 to 3.5 log10 units greater than mean values determined by CFU measurement. When used to monitor disease progression in infected mice, the qPCR assay detected an increase of nearly 4 log10 conidial equivalents/g of kidney between days 1 and 4 following infection, with a peak fungal burden that coincided with the onset of significant mortality. Traditional CFU methodology detected only a marginal increase in fungal load in the same tissues. In contrast, when mice were infected with Candida albicans, which does not form true mycelia in tissues, quantitation of kidney burden by both qPCR and CFU assays was strongly correlated as the infection progressed. Finally, treatment of mice with induced disseminated aspergillosis with either caspofungin or amphotericin B reduced the A. fumigatus burden in infected kidneys to the limit of detection for the qPCR assay. Because of its much larger dynamic range, the qPCR assay is superior to traditional CFU determination for monitoring the progression of disseminated aspergillosis and evaluating the activity of antifungal antibiotics against A. fumigatus.


Antimicrobial Agents and Chemotherapy | 2005

Caspofungin Inhibits Rhizopus oryzae 1,3-β-d-Glucan Synthase, Lowers Burden in Brain Measured by Quantitative PCR, and Improves Survival at a Low but Not a High Dose during Murine Disseminated Zygomycosis

Ashraf S. Ibrahim; Joel Bowman; Valentina Avanessian; Keturah Brown; Brad Spellberg; John E. Edwards; Cameron M. Douglas

ABSTRACT Rhizopus oryzae is the most common cause of zygomycosis, a life-threatening infection that usually occurs in patients with diabetic ketoacidosis. Despite standard therapy, the overall rate of mortality from zygomycosis remains >50%, and new strategies for treatment are urgently needed. The activities of caspofungin acetate (CAS) and other echinocandins (antifungal inhibitors of the synthesis of 1,3-β-d-glucan synthase [GS]) against the agents of zygomycosis have remained relatively unexplored, especially in animal models of infection. We found that R. oryzae has both an FKS gene, which in other fungi encodes a subunit of the GS synthesis complex, and CAS-susceptible, membrane-associated GS activity. Low-dose but not high-dose CAS improved the survival of mice with diabetic ketoacidosis infected with a small inoculum but not a large inoculum of R. oryzae. Fungal burden, assessed by a novel quantitative PCR assay, correlated with increasing inocula and progression of disease, particularly later in the infection, when CFU counts did not. CAS decreased the brain burden of R. oryzae when it was given prophylactically but not when therapy was started after infection. These results indicate that CAS has significant but limited activity against R. oryzae in vivo and demonstrates an inverse dose-response effect. The potential for CAS to play a role in combination therapy against zygomycosis merits further investigation.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Anthrax lethal factor inhibition

W. L. Shoop; Yusheng Xiong; Judyann Wiltsie; Andrea Woods; Jian Guo; James V. Pivnichny; T. Felcetto; B. F. Michael; Alka Bansal; Richard T. Cummings; Barry R. Cunningham; A. M. Friedlander; Cameron M. Douglas; S. B. Patel; Douglas Wisniewski; G. Scapin; Scott P. Salowe; Dennis M. Zaller; Kevin T. Chapman; Edward M. Scolnick; Dennis M. Schmatz; Kenneth F. Bartizal; Malcolm Maccoss; Jeffrey D. Hermes

The primary virulence factor of Bacillus anthracis is a secreted zinc-dependent metalloprotease toxin known as lethal factor (LF) that is lethal to the host through disruption of signaling pathways, cell destruction, and circulatory shock. Inhibition of this proteolytic-based LF toxemia could be expected to provide therapeutic value in combination with an antibiotic during and immediately after an active anthrax infection. Herein is shown the crystal structure of an intimate complex between a hydroxamate, (2R)-2-[(4-fluoro-3-methylphenyl)sulfonylamino]-N-hydroxy-2-(tetrahydro-2H-pyran-4-yl)acetamide, and LF at the LF-active site. Most importantly, this molecular interaction between the hydroxamate and the LF active site resulted in (i) inhibited LF protease activity in an enzyme assay and protected macrophages against recombinant LF and protective antigen in a cell-based assay, (ii) 100% protection in a lethal mouse toxemia model against recombinant LF and protective antigen, (iii) ≈50% survival advantage to mice given a lethal challenge of B. anthracis Sterne vegetative cells and to rabbits given a lethal challenge of B. anthracis Ames spores and doubled the mean time to death in those that died in both species, and (iv) 100% protection against B. anthracis spore challenge when used in combination therapy with ciprofloxacin in a rabbit “point of no return” model for which ciprofloxacin alone provided 50% protection. These results indicate that a small molecule, hydroxamate LF inhibitor, as revealed herein, can ameliorate the toxemia characteristic of an active B. anthracis infection and could be a vital adjunct to our ability to combat anthrax.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease

Richard T. Cummings; Scott P. Salowe; Barry R. Cunningham; Judyann Wiltsie; Young Whan Park; Lisa M. Sonatore; Douglas Wisniewski; Cameron M. Douglas; Jeffrey D. Hermes; Edward M. Scolnick

A fluorescence resonance energy transfer assay has been developed for monitoring Bacillus anthracis lethal factor (LF) protease activity. A fluorogenic 16-mer peptide based on the known LF protease substrate MEK1 was synthesized and found to be cleaved by the enzyme at the anticipated site. Extension of this work to a fluorogenic 19-mer peptide, derived, in part, from a consensus sequence of known LF protease targets, produced a much better substrate, cleaving approximately 100 times more efficiently. This peptide sequence was modified further on resin to incorporate donor/quencher pairs to generate substrates for use in fluorescence resonance energy transfer-based appearance assays. All peptides cleaved at similar rates with signal/background ranging from 9–16 at 100% turnover. One of these substrates, denoted (Cou)Consensus(K(QSY-35)GG)-NH2, was selected for additional assay optimization. A plate-based assay requiring only low nanomolar levels of enzyme was developed for screening and inhibitor characterization.


Antimicrobial Agents and Chemotherapy | 1994

Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis.

Myra B. Kurtz; Cameron M. Douglas; Jean A. Marrinan; K Nollstadt; Janet C. Onishi; S Dreikorn; J Milligan; S Mandala; J Thompson; James M. Balkovec

The pneumocandins are natural lipopeptide products of the echinocandin class which inhibit the synthesis of 1,3-beta-D-glucan in susceptible fungi. The lack of a corresponding pathway in mammalian hosts makes this mode of action an attractive one for treating systemic infections. Substitution by an aminoethyl ether at the hemiaminal and dehydration and reduction of the glutamine of pneumocandin B0 produced a semisynthetic compound (L-733,560) with intrinsic water solubility, significantly increased potency, and a broader antifungal spectrum. To evaluate the mechanism for the improved antifungal efficacy, we determined that L-733,560 was a more potent inhibitor of glucan synthase activity in vitro, did not affect the other membrane-bound enzymes tested, conferred susceptibility to lysis in the absence of osmotic support, and did not disrupt currents in liposomal bilayers or 86Rb+ fluxes from liposomes. In Aspergillus species L-733,560 also produced the same morphological alterations as pneumocandin B0. A stereoisomer of L-733,560 with poor antifungal activity was a weak inhibitor of glucan synthase. All of these results support the notion that the enhanced antifungal activity of L-733,560 is achieved by superior inhibition of glucan synthesis and not by nonspecific membrane effects or a second mode of action. Images


Antimicrobial Agents and Chemotherapy | 1995

Aerosol and parenteral pneumocandins are effective in a rat model of pulmonary aspergillosis

Myra B. Kurtz; E M Bernard; F F Edwards; Jean A. Marrinan; J Dropinski; Cameron M. Douglas; D Armstrong

The pneumocandins are semisynthetic analogs of echinocandin-like compounds that have shown efficacy in animal models of systemic candidiasis, disseminated aspergillosis, and pneumocystis pneumonia. However, the most common form of Aspergillus infection in susceptible patients is pulmonary aspergillosis, which was not directly tested in the mouse models used in the past. We have evaluated three pneumocandins, L-693,989, L-731,373, and L-733,560, in a rat model of pulmonary aspergillosis. Male Sprague-Dawley rats were treated for 2 weeks with cortisone and tetracycline and fed a low-protein diet before being inoculated via the trachea with 10(6) conidia of Aspergillus fumigatus H11-20. In the absence of drug treatment, the animals developed a progressive, rapidly fatal bronchopneumonia. All three pneumocandins at doses of 5 mg/kg (intraperitoneally [i.p.] every 12 h [q12h]) were effective in delaying mortality in this model. Survival at day 7 postinfection was 20% among controls (n = 10 for all groups), while it was 60, 80, and 90% in groups that were treated with L-693,989, L-731,373, and L-733,560, respectively. In another trial, survival at day 7 postinfection was 25% among controls (n = 8 for all groups); it was 87.5% in a group treated with amphotericin B (0.5 mg/kg i.p. q12h) and was 100% in a group treated with L-733,560 (0.625 mg/kg i.p. q12h). In a separate trial, aerosol L-693,989 administered 2 h before infection (5 mg/kg) delayed mortality. Eight of the 10 animals treated with aerosol L-693,989 survived for 7 days, whereas only 2 of 10 control animals survived. We conclude that the pneumocandins we tested were highly effective in an animal model of pulmonary aspergillosis.


PLOS ONE | 2015

Correlation between Circulating Fungal Biomarkers and Clinical Outcome in Invasive Aspergillosis

Dionysios Neofytos; Radha Railkar; Kathleen M. Mullane; David N. Fredricks; Bruno Granwehr; Kieren A. Marr; Nikolaos G. Almyroudis; Dimitrios P. Kontoyiannis; Johan Maertens; Rebecca Fox; Cameron M. Douglas; Robert Iannone; Eunkyung Kauh; Norah Shire

Objective means are needed to predict and assess clinical response in patients treated for invasive aspergillosis (IA). We examined whether early changes in serum galactomannan (GM) and/or β-D-glucan (BDG) can predict clinical outcomes. Patients with proven or probable IA were prospectively enrolled, and serial GM and BDG levels and GM optical density indices (GMI) were calculated twice weekly for 6 weeks following initiation of standard-of-care antifungal therapy. Changes in these biomarkers during the first 2 and 6 weeks of treatment were analyzed for associations with clinical response and survival at weeks 6 and 12. Among 47 patients with IA, 53.2% (25/47) and 65.9% (27/41) had clinical response by weeks 6 and 12, respectively. Changes in biomarkers during the first 2 weeks were associated with clinical response at 6 weeks (GMI, P = 0.03) and 12 weeks (GM+BDG composite, P = 0.05; GM, P = 0.04; GMI, P = 0.02). Changes in biomarkers during the first 6 weeks were also associated with clinical response at 6 weeks (GM, P = 0.05; GMI, P = 0.03) and 12 weeks (BDG+GM, P = 0.02; GM, P = 0.02; GMI, P = 0.01). Overall survival rates at 6 weeks and 12 weeks were 87.2% (41/47) and 79.1% (34/43), respectively. Decreasing biomarkers in the first 2 weeks were associated with survival at 6 weeks (BDG+GM, P = 0.03; BDG, P = 0.01; GM, P = 0.03) and at 12 weeks (BDG+GM, P = 0.01; BDG, P = 0.03; GM, P = 0.01; GMI, P = 0.007). Similar correlations occurred for biomarkers measured over 6 weeks. Patients with negative baseline GMI and/or persistently negative GMI during the first 2 weeks were more likely to have CR and survival. These results suggest that changes of biomarkers may be informative to predict and/or assess response to therapy and survival in patients treated for IA.

Collaboration


Dive into the Cameron M. Douglas's collaboration.

Researchain Logo
Decentralizing Knowledge