Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cameron S. Metcalf is active.

Publication


Featured researches published by Cameron S. Metcalf.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Status epilepticus induces cardiac myofilament damage and increased susceptibility to arrhythmias in rats.

Cameron S. Metcalf; Steven Poelzing; Jason G. Little; Steven L. Bealer

Status epilepticus (SE) is a seizure or series of seizures that persist for >30 min and often results in mortality. Death rarely occurs during or immediately following seizure activity, but usually within 30 days. Although ventricular arrhythmias have been implicated in SE-related mortality, the effects of this prolonged seizure activity on the cardiac function and susceptibility to arrhythmias have not been directly investigated. We evaluated myocardial damage, alterations in cardiac electrical activity, and susceptibility to experimentally induced arrhythmias produced by SE in rats. SE resulted in seizure-related increases in blood pressure, heart rate, and the first derivative of pressure, as well as modest, diffuse myocyte damage assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining. Ten to twelve days following seizures, electrocardiographic recordings showed arrhythmogenic alterations in cardiac electrical activity, denoted by prolonged QT interval corrected for heart rate and QT dispersion. Finally, SE increased susceptibility to experimentally induced (intravenous aconitine) cardiac arrhythmias. These data suggest that SE produces tachycardic ischemia following the activation of the sympathetic nervous system, resulting in cardiac myofilament damage, arrhythmogenic alterations in cardiac electrical activity, and increased susceptibility to ventricular arrhythmias.


Epilepsy Research | 2010

Autonomic and cellular mechanisms mediating detrimental cardiac effects of status epilepticus

Steven L. Bealer; Jason G. Little; Cameron S. Metcalf; Amy L. Brewster; Anne E. Anderson

Prolonged seizure activity (status epilepticus; SE) can result in increased susceptibility to lethal ventricular arrhythmias for an extended period of time following seizure termination. SE is accompanied by acute, intense activation of the sympathetic nervous system (SymNS) and results in myocyte myofilament damage, arrhythmogenic alterations in cardiac electrical activity, and increased susceptibility to ventricular arrhythmias. However, the mechanisms mediating the changes in cardiac function, and the specific arrhythmogenic substrate produced during SE are unknown. To determine if detrimental cardiac effects of SE are mediated by SymNS stimulation of the heart, we examined the effects of B-adrenergic blockade (atenolol) during seizure activity on blood pressure, heart rate, myocyte myofilament injury (cardiac troponin I, cTnI), electrocardiographic activity, and susceptibility to arrhythmias. Furthermore, we determined if SE was associated with altered expression of the Kv4.x potassium channels, which are critical for action potential repolarization and thereby contribute significantly to normal cardiac electrical activity. Lithium-pilocarpine induced SE was associated with acute tachycardia, hypertension, and cardiomyocyte damage. Arrhythmogenic alterations in cardiac electrical activity accompanied by increased susceptibility to experimentally induced arrhythmias were evident during the first 2 weeks following SE. Both were prevented by atenolol treatment during seizures. Furthermore, one and two weeks after SE, myocyte ion channel remodeling, characterized by a decreased expression of cardiac Kv4.2 potassium channels, was evident. These data suggest that the cardiac effects of prolonged and intense SymNS activation during SE induce myofilament damage and downregulation of Kv4.2 channels, which alter cardiac electrical activity and increase susceptibility to lethal arrhythmias.


European Journal of Pharmacology | 2008

Differential regional effects of methamphetamine on dopamine transport

Pei Wen Chu; Kristi S. Seferian; Elisabeth Birdsall; Jannine G. Truong; James A. Riordan; Cameron S. Metcalf; Glen R. Hanson; Annette E. Fleckenstein

Multiple high-dose methamphetamine administrations cause long-lasting (>1 week) deficits in striatal dopaminergic neuronal function. This stimulant likewise causes rapid (within 1 h) and persistent (at least 48 h) decreases in activities of striatal: 1) dopamine transporters, as assessed in synaptosomes; and 2) vesicular monoamine transporter -2 (VMAT-2), as assessed in a non-membrane-associated (referred to herein as cytoplasmic) vesicular subcellular fraction. Importantly, not all brain areas are vulnerable to methamphetamine-induced long-lasting deficits. Similarly, the present study indicates that methamphetamine exerts differential acute effects on monoaminergic transporters according to brain region. In particular, results revealed that in the nucleus accumbens, methamphetamine rapidly, but reversibly (within 24 h), decreased plasmalemmal dopamine transporter function, without effect on plasmalemmal dopamine transporter immunoreactivity. Methamphetamine also rapidly and reversibly (within 48 h) decreased cytoplasmic VMAT-2 function in this region, with relatively little effect on cytoplasmic VMAT-2 immunoreactivity. In contrast, methamphetamine did not alter either dopamine transporter or VMAT-2 activity in the hypothalamus. Noteworthy, the nucleus accumbens and hypothalamus did not display the persistent long-lasting striatal dopamine depletions caused by the stimulant. Taken together, these data suggest that deficits in plasmalemmal and vesicular monoamine transporter activity lasting greater than 24-48 h may be linked to the long-lasting dopaminergic deficits caused by methamphetamine and appear to be region specific.


Epilepsia | 2009

Status epilepticus produces chronic alterations in cardiac sympathovagal balance.

Cameron S. Metcalf; Przemysław B. Radwański; Steven L. Bealer

Purpose:  Status epilepticus (SE) activates the autonomic nervous system, increasing sympathetic nervous system control of cardiac function during seizure activity. However, lasting effects of SE on autonomic regulation of the heart, which may contribute to mortality following seizure activity, are unknown. Therefore, autonomic control of cardiac function was assessed following SE.


Journal of Pharmacology and Experimental Therapeutics | 2014

Analgesic Properties of a Peripherally Acting and GalR2 Receptor–Preferring Galanin Analog in Inflammatory, Neuropathic, and Acute Pain Models

Cameron S. Metcalf; Brian D. Klein; Daniel R. McDougle; Liuyin Zhang; Misty D. Smith; Grzegorz Bulaj; H. Steve White

There are ongoing efforts to develop pain therapeutics with novel mechanisms of action that avoid common side effects associated with other analgesics. The anticonvulsant neuropeptide galanin is a potent regulator of neuronal excitability and has a well established role in pain modulation, making it a potential target for novel therapies. Our previous efforts focused on improving blood-brain-barrier penetration and enhancing the metabolic stability of galanin analogs to protect against seizures. More recently, we designed peripherally acting galanin analogs that reduce pain-related behaviors by acting in the periphery and exhibit preferential binding toward galanin receptor (GalR)2 over GalR1. In this study, we report preclinical studies of a monodisperse oligoethylene glycol–containing galanin analog, NAX 409-9 (previously reported as GalR2-dPEG24), in rodent analgesic and safety models. Results obtained with NAX 409-9 in these tests were compared with the representative analgesics gabapentin, ibuprofen, acetylsalicylic acid, acetaminophen, and morphine. In mice that received intraplantar carrageenan, NAX 409-9 increased paw withdrawal latency with an ED50 of 6.6 mg/kg i.p. NAX 409-9 also increased the paw withdrawal threshold to mechanical stimulation following partial sciatic nerve ligation in rats (2 mg/kg). Conversely, NAX 409-9 had no effect in the tail flick or hot plate assays (up to 24 mg/kg). Importantly, NAX 409-9 did not negatively affect gastrointestinal motility (4–20 mg/kg), respiratory rate (40–80 mg/kg), or bleed time (20 mg/kg). These studies illustrate that this nonbrain-penetrating galanin analog reduces pain behaviors in several models and does not produce some of the dose-limiting toxicities associated with other analgesics.


Molecular Pharmaceutics | 2013

Incorporation of Monodisperse Oligoethyleneglycol Amino Acids into Anticonvulsant Analogues of Galanin and Neuropeptide Y Provides Peripherally Acting Analgesics

Liuyin Zhang; Brian D. Klein; Cameron S. Metcalf; Misty D. Smith; Daniel R. McDougle; Hee Kyoung Lee; H. Steve White; Grzegorz Bulaj

Delivery of neuropeptides into the central and/or peripheral nervous systems supports development of novel neurotherapeutics for the treatment of pain, epilepsy and other neurological diseases. Our previous work showed that the combination of lipidization and cationization applied to anticonvulsant neuropeptides galanin (GAL) and neuropeptide Y (NPY) improved their penetration across the blood-brain barrier yielding potent antiepileptic lead compounds, such as Gal-B2 (NAX 5055) or NPY-B2. To dissect peripheral and central actions of anticonvulsant neuropeptides, we rationally designed, synthesized and characterized GAL and NPY analogues containing monodisperse (discrete) oligoethyleneglycol-lysine (dPEG-Lys). The dPEGylated analogues Gal-B2-dPEG(24), Gal-R2-dPEG(24) and NPY-dPEG(24) displayed analgesic activities following systemic administration, while avoiding penetration into the brain. Gal-B2-dPEG(24) was synthesized by a stepwise deprotection of orthogonal 4-methoxytrityl and allyloxycarbonyl groups, and subsequent on-resin conjugations of dPEG(24) and palmitic acids, respectively. All the dPEGylated analogues exhibited substantially decreased hydrophobicity (expressed as logD values), increased in vitro serum stabilities and pronounced analgesia in the formalin and carrageenan inflammatory pain assays following systemic administration, while lacking apparent antiseizure activities. These results suggest that discrete PEGylation of neuropeptides offers an attractive strategy for developing neurotherapeutics with restricted penetration into the central nervous system.


Experimental Neurology | 2007

Increased dietary sodium alters Fos expression in the lamina terminalis during intravenous angiotensin II infusion

Steven L. Bealer; Cameron S. Metcalf; Ryan Heyborne

These studies examined the effects of increased dietary sodium on expression of Fos, the protein product of c-fos, in forebrain structures in the rat following intravenous infusion with angiotensin II (AngII). Animals were provided with either tap water (Tap) or isotonic saline solution (Iso) as their sole drinking fluid for 3-5 weeks prior to testing. Rats were then implanted with catheters in a femoral artery and vein. The following day, the conscious, unrestrained animals received iv infusion of either isotonic saline (Veh), AngII, or phenylephrine (Phen) for 2 h. Blood pressure and heart rate were monitored continuously throughout the procedure. Brains were subsequently processed for evaluation of Fos-like immunoreactivity (Fos-Li IR) in the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO), and the median preoptic nucleus (MnPO). Fos-Li IR was significantly increased in the SFO and OVLT of animals consuming both Tap and Iso following AngII, but not Phen, compared to Veh infusions. Furthermore, Fos-Li IR in the MnPO was increased following AngII infusion in rats consuming a high sodium diet, but not in animals drinking Tap. These data suggest that increased dietary sodium sensitizes the MnPO neurons to excitatory input from brain areas responding to circulating AngII.


Epilepsia | 2017

Development and pharmacologic characterization of the rat 6 Hz model of partial seizures

Cameron S. Metcalf; Peter J. West; Kyle E. Thomson; Sharon F. Edwards; Misty D. Smith; H. Steve White; Karen S. Wilcox

The mouse 6 Hz model of psychomotor seizures is a well‐established and commonly used preclinical model for antiseizure drug (ASD) discovery. Despite its widespread use both in the identification and differentiation of novel ASDs in mice, a corresponding assay in rats has not been developed. We established a method for 6 Hz seizure induction in rats, with seizure behaviors similar to those observed in mice including head nod, jaw clonus, and forelimb clonus.


Epilepsia | 2017

Efficacy of mGlu2‐positive allosteric modulators alone and in combination with levetiracetam in the mouse 6 Hz model of psychomotor seizures

Cameron S. Metcalf; Brian D. Klein; Misty D. Smith; Tim Pruess; Marc Ceusters; Hilde Lavreysen; Stefan Pype; Nancy Van Osselaer; Roy Twyman; H. Steve White

The metabotropic glutamate receptor subtype 2 (mGlu2) possesses both orthosteric and allosteric modulatory sites, are expressed in the frontal cortex and limbic structures, and can affect excitatory synaptic transmission. Therefore, mGlu2 is a potential therapeutic target in the treatment of epilepsy. The present study seeks to evaluate the anticonvulsant potential of mGlu2‐acting compounds.


Autonomic Neuroscience: Basic and Clinical | 2005

Increased dietary sodium enhances activation of neurons in the medullary cardiovascular pathway during acute sodium loading in the rat

Steven L. Bealer; Cameron S. Metcalf

Increased sodium ingestion diminishes baroreflex-induced bradycardia in animals during acute sodium loading. These experiments studied effects of high sodium diet on activation of central nervous system sites associated with baroreflex activation and cardiovascular responses to hypernatremia during systemic sodium administration. Fos-like (Fos-Li) protein immunoreactivity was measured to estimate activation of neurons in the medullary baroreflex pathway (nucleus tractus solitarius (NTS), caudal ventrolateral medulla (CVLM), and rostral ventrolateral medulla (RVLM)), and in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) in male Sprague-Dawley rats consuming standard chow and either tap water (TAP) or isotonic saline (ISO) for 2-3 weeks. Fos-Li immunoreactivity in the PVN and SON was similar in rats consuming TAP and ISO infused with 0.6 M NaCl. However, there were significantly more Fos-Li positive cells in NTS and CVLM of animals consuming ISO and infused with 0.6 M NaCl than any other experimental group, while Fos-Li immunoreactivity was similar in the RVLM in all animals. In conclusion, these data demonstrate that activation of neurons in the NTS and CVLM was significantly enhanced by moderate sodium loading in animals consuming high dietary sodium. The increased basal activation of neurons in these medullary sites could account for decreased baroreflex-induced bradycardia observed during ingestion of a high salt diet and acute, moderate sodium loading.

Collaboration


Dive into the Cameron S. Metcalf's collaboration.

Top Co-Authors

Avatar

H. Steve White

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy L. Brewster

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne E. Anderson

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge