Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Misty D. Smith is active.

Publication


Featured researches published by Misty D. Smith.


Neurotherapeutics | 2007

Discovery of antiepileptic drugs

Misty D. Smith; Karen S. Wilcox; H. Steve White

SummarySince 1993, the Anticonvulsant Drug Development Program has contributed to the successful development of nine clinically effective drugs for the symptomatic treatment of epilepsy. These include felbamate (1993), gabapentin (1994), lamotrigine (1994), fosphenytoin (1996), topiramate (1996), tiagabine (1997), levetiracetam (1999), zonisamide (2000), and oxcarbazepine (2000). Despite the apparent success of the current discovery process, a significant need persists for more efficacious and less toxic antiepileptic drugs (AEDs). This is particularly true for patients whose seizures remain refractory to the currently available AEDs. This chapter will review the current process for AED discovery employed by the Anticonvulsant Drug Development Program at the University of Utah and other laboratories working toward the common goal of discovering better therapeutic options for patients living with epilepsy. It will discuss some of the inherent advantages and limitations of the primary animal models employed, while offering insight into potential future directions as we seek to better understand the pathophysiology underlying acquired epilepsy, therapy resistance, and epileptogenesis.


Neuroscience | 2002

SEX DIFFERENCES IN HIPPOCAMPAL SLICE EXCITABILITY: ROLE OF TESTOSTERONE

Misty D. Smith; L.S Jones; Marlene A. Wilson

In vivo fluctuations in gonadal hormones alter hippocampal excitability and modulate both physiological and pathological hippocampal processes. To assess hormonal effects on excitability within a functional hippocampal circuit, extracellular CA1 field responses were compared in slices from intact male, intact female, orchidectomized male, and ovariectomized female rats. Secondly, the effects of in vitro applications of 17-beta estradiol, progesterone, or testosterone on baseline excitability of slices from gonadectomized rats were assessed versus pre-hormone baseline measures. Finally, using the in vitro kindling model of slice epileptogenesis, steroid hormone effects on interictal-like activity were also examined. Significant sex differences in excitatory postsynaptic potential amplitude were observed, with slices from males having larger excitatory postsynaptic potential amplitudes than those from females. Gonadectomy significantly decreased excitatory postsynaptic potential amplitude in slices from male rats. Slices from gonadectomized male and female rats also showed a decreased dendritic excitatory postsynaptic potential slope relative to slices from intact male and females rats. In vitro application of testosterone significantly increased excitatory postsynaptic potential amplitudes in slices from both orchidectomized males and ovariectomized females and the population spike amplitude of slices from ovariectomized females. Following in vitro kindling, slices from intact males showed greater spontaneous burst rates than slices from intact females, further suggesting an excitatory effect of testosterone. These results suggest: (1) a sex difference in the level of baseline excitability between slices from intact males and females as measured by excitatory postsynaptic potential amplitudes, (2) testosterone has excitatory effects on baseline physiology and kindled hippocampal responses, and (3) slices from males show a greater level of excitability than those from females in the in vitro kindling model.


Journal of Medicinal Chemistry | 2008

Design, Synthesis, and Characterization of High-Affinity, Systemically-Active Galanin Analogues with Potent Anticonvulsant Activities

Grzegorz Bulaj; Brad R. Green; Hee Kyoung Lee; Charles R. Robertson; Karen L. White; Liuyin Zhang; Marianna Sochanska; Sean P. Flynn; Erika Adkins Scholl; Timothy H. Pruess; Misty D. Smith; H. Steve White

Galanin is an endogenous neuropeptide that modulates seizures in the brain. Because this neuropeptide does not penetrate the blood-brain barrier, we designed truncated galanin analogues in which nonessential amino acid residues were replaced by cationic and/or lipoamino acid residues. The analogues prevented seizures in the 6 Hz mouse model of epilepsy following intraperitoneal administration. The most active analogue, Gal-B2 (NAX 5055), contained the -Lys-Lys-Lys(palmitoyl)-Lys-NH(2) motif and exhibited high affinity for galanin receptors (K(i) = 3.5 nM and 51.5 nM for GalR1 and GalR2, respectively), logD = 1.24, minimal helical conformation and improved metabolic stability. Structure-activity-relationship analysis suggested that cationization combined with position-specific lipidization was critical for improving the systemic activity of the analogues. Because the anticonvulsant activity of galanin is mediated by the receptors located in hippocampus and other limbic brain structures, our data suggest that these analogues penetrate into the brain. Gal-B2 may lead to development of first-in-class antiepileptic drugs.


Neuropharmacology | 2007

A pharmacophore derived phenytoin analogue with increased affinity for slow inactivated sodium channels exhibits a desired anticonvulsant profile

Paul W. Lenkowski; Timothy W. Batts; Misty D. Smith; Seong Hoon Ko; Paulianda J. Jones; Catherine Taylor; Ashley K. McCusker; Gary C. Davis; Hali Hartmann; H. Steve White; Milton L. Brown; Manoj K. Patel

Phenytoin (DPH) is a clinically useful sodium (Na) channel blocker with efficacy against partial and generalized seizures. We have developed a novel hydantoin compound (HA) using comparative molecular field analysis (CoMFA) and evaluated its effects on hNa(v)1.2 channels. Both DPH and HA demonstrated affinity for resting (K(r)=13.9microM for HA, K(r)=464microM for DPH) and slow inactivated channels (K(I)=975nM for HA, K(I)=20.6microM for DPH). However, HA also exhibited an affinity for fast inactivated channels (K(I)=2.5microM) and shifted the V(1/2) for activation in the depolarizing direction. Furthermore, HA exhibited profound use dependent block at both 5 and 10Hz stimulation frequencies. In the 6Hz seizure model (32mA) HA had an ED(50) of 47.1mg/kg and a TD(50) of 131mg/kg (protective index (PI)=2.8). In comparison, the ED(50) for DPH was approximately 27.5mg/kg with a TD(50) of 35.6mg/kg (PI approximately 1.3). These findings provide evidence for the utility of CoMFA in the design of novel anticonvulsants and support the hypothesis that states selectivity plays an important role in achieving optimal protection with minimal side effects.


Epilepsy Research | 2007

Phenytoin-and carbamazepine-resistant spontaneous bursting in rat entorhinal cortex is blocked by retigabine in vitro

Misty D. Smith; Amy C. Adams; Gerald W. Saunders; H. Steve White; Karen S. Wilcox

Hyperexcitability in the medial entorhinal cortex-hippocampal (mEC-HC) circuit in the initial weeks after prolonged seizure activity may contribute to the epileptogenic process in animal models of temporal lobe epilepsy (TLE). The present study examined combined mEC-HC slices (400 microm) using field potential recordings 1-2 weeks following the multiple administration, low-dose kainic acid (KA) model of TLE [Hellier, J.L., Patrylo, P.R., Buckmaster, P.S., Dudek, F.E., 1998. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31, 73-84]. Field potential recordings in slices from KA-treated rats demonstrated hallmarks of hyperexcitability in the mEC and in the CA1 and CA3 cell body regions of the HC. Spontaneous burst (SB) activity was observed under baseline recording conditions in the mEC of several slices from KA-treated rats, but not in the slices from saline-treated control rats. Elevating ACSF [K(+)](o) (6mM) in the presence of picrotoxin (50 microM) increased SB rates in all slices tested. However, there was a significantly shorter latency to onset of bursting and prolonged evoked response durations in layer II of the mEC of slices from KA-treated rats versus those from controls. Neither carbamazepine (CBZ) nor phenytoin (PHT) abolished SB activity in slices from KA-treated rats; whereas, SB activity in slices from control rats was dose-dependently reduced at 100 microM CBZ. In contrast, the novel anticonvulsant retigabine (RGB) dramatically reduced SB frequency in both control and KA-treated groups. The hyperexcitability observed in combined mEC-HC brain slices from KA-treated rats suggests that the mEC, as well as the HC, may contribute to the epileptogenic process after KA-induced seizure activity. This model may provide an efficient, flexible in vitro paradigm for differentiating novel AEDs in a model of pharmacoresistant bursting.


Neurobiology of Disease | 2014

Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler's virus model of temporal lobe epilepsy.

Anthony D. Umpierre; Gregory J. Remigio; E. Jill Dahle; Kate Bradford; Anitha Alex; Misty D. Smith; Peter J. West; H. Steve White; Karen S. Wilcox

Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniels strain of Theilers Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined that TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both seizure burden and comorbid conditions.


Epilepsy Research | 2008

Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC)

Misty D. Smith; Gerald W. Saunders; Rasmus P. Clausen; Bente Frǿlund; Povl Krogsgaard-Larsen; Orla M. Larsson; Arne Schousboe; Karen S. Wilcox; H. Steve White

Disruptions in GABAergic neurotransmission have been implicated in numerous CNS disorders, including epilepsy and neuropathic pain. Selective inhibition of neuronal and glial GABA transporter subtypes may offer unique therapeutic options for regaining balance between inhibitory and excitatory systems. The ability of two GABA transport inhibitors to modulate inhibitory tone via inhibition of mGAT1 (tiagabine) or mGAT2/BGT-1 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol), also known as EF1502) was evaluated using an in vitro model of spontaneous interictal-like bursting (SB). SBs were recorded extracellularly in combined mEC-HC horizontal brain slices (400 microm; 31+/-1 degrees C) obtained from KA-treated rats. Slice recordings demonstrated that EF1502 exhibited a concentration-dependent reduction in SB frequency. EF1502 significantly reduced SB rate to 32% of control at the 30 microM concentration, while reducing the area and duration of SB activity to 60% and 46% of control, respectively, at the 10 microM concentration. In contrast, the GAT1 selective inhibitor tiagabine (3, 10, and 30 microM) was unable to significantly reduce the frequency of SB activity in the mEC, despite significantly reducing both the duration (51% of control) and area (58% of control) of the SB at concentrations as low as 3 microM. The ability of EF1502, but not tiagabine, to inhibit SBs in the mEC suggests that this in vitro model of pharmacoresistant SB activity is useful to differentiate between novel anticonvulsants with similar mechanisms of action and suggests a therapeutic potential for non-GAT1 transport inhibitors.


Journal of Biological Chemistry | 2012

Stapling Mimics Noncovalent Interactions of γ-Carboxyglutamates in Conantokins, Peptidic Antagonists of N-Methyl-d-Aspartic Acid Receptors

Randall Jeffrey Platt; Brad R. Green; Misty D. Smith; Jack J. Skalicky; Paweł Gruszczyński; H. Steve White; Baldomero M. Olivera; Grzegorz Bulaj; Joanna Gajewiak

Background: Can dicarba bridges (stapling) replace noncovalent interactions that stabilize helical conformation of neuroactive peptides? Results: A rational design, synthesis, structural, and functional characterization of stapled conG analogs that target NMDA receptors is reported. Conclusion: Stapled conG analogs are potent antagonists of NMDA receptors and anticonvulsant compounds. Significance: Stapling can be successfully applied to convert neuroactive peptides into drug leads. Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-d-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11–15,Si,i+4S(8)], blocked NR2B-containing NMDA receptors with IC50 = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11–15,Si,i+4S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.


Biochemistry | 2012

Conantokins Derived from the Asprella Clade Impart conRl-B, an N-Methyl d-Aspartate Receptor Antagonist with a Unique Selectivity Profile for NR2B Subunits

Konkallu Hanumae Gowd; Vernon Twede; Joanna Gajewiak; Misty D. Smith; Maren Watkins; Randall Jeffrey Platt; Gabriela Toledo; H. Steve White; Baldomero M. Olivera; Grzegorz Bulaj

Using molecular phylogeny has accelerated the discovery of peptidic ligands targeted to ion channels and receptors. One clade of venomous cone snails, Asprella, appears to be significantly enriched in conantokins, antagonists of N-methyl d-aspartate receptors (NMDARs). Here, we describe the characterization of two novel conantokins from Conus rolani, including conantokin conRl-B that has shown an unprecedented selectivity for blocking NMDARs that contain NR2B subunits. ConRl-B shares only some sequence similarity with the most studied NR2B selective conantokin, conG. The divergence between conRl-B and conG in the second inter-Gla loop was used to design analogues for structure-activity studies; the presence of Pro10 was found to be key to the high potency of conRl-B for NR2B, whereas the ε-amino group of Lys8 contributed to discrimination in blocking NR2B- and NR2A-containing NMDARs. In contrast to previous findings for Tyr5 substitutions in other conantokins, conRl-B[L5Y] showed potencies on the four NR2 NMDA receptor subtypes that were similar to those of the native conRl-B. When delivered into the brain, conRl-B was active in suppressing seizures in the model of epilepsy in mice, consistent with NR2B-containing NMDA receptors being potential targets for antiepileptic drugs. Circular dichroism experiments confirmed that the helical conformation of conRl-B is stabilized by divalent metal ions. Given the clinical applications of NMDA antagonists, conRl-B provides a potentially important pharmacological tool for understanding the differential roles of NMDA receptor subtypes in the nervous system. This work shows the effectiveness of coupling molecular phylogeny, chemical synthesis, and pharmacology for discovering new bioactive natural products.


ChemMedChem | 2009

Glycosylated Neurotensin Analogues Exhibit Sub-picomolar Anticonvulsant Potency in a Pharmacoresistant Model of Epilepsy

Hee Kyoung Lee; Liuyin Zhang; Misty D. Smith; H. Steve White; Grzegorz Bulaj

The glycosylation of neuroactive peptides is a promising strategy to treat neurological and psychiatric disorders. Herein we investigated the effects of site‐specific glycosylation of neurotensin (NT). The glycosylated analogues have low‐nanomolar affinities and agonist activities toward NTS1, and suppress seizures with sub‐picomolar potency. Our work points to a new research direction of exploring BBB‐permeable NT analogues as potential first‐in‐class antiepileptic drugs.

Collaboration


Dive into the Misty D. Smith's collaboration.

Top Co-Authors

Avatar

H. Steve White

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge