Cameron Snell
John Radcliffe Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cameron Snell.
Cancer Research | 2011
Francesca M. Buffa; Carme Camps; Laura Winchester; Cameron Snell; Harriet E. Gee; Helen Sheldon; Marian Taylor; Adrian L. Harris; Jiannis Ragoussis
microRNA expression profiling plays an emerging role in cancer classification and identification of therapeutic strategies. In this study, we have evaluated the benefits of a joint microRNA-mRNA analysis in breast cancer. Matched mRNA and microRNA global expression profiling was conducted in a well-annotated cohort of 207 cases with complete 10-year follow-up. Penalized Cox regression including microRNA expression, mRNA expression, and clinical covariates was used to identify microRNAs associated with distant relapse-free survival (DRFS) that provide independent prognostic information, and are not simply surrogates of previously identified prognostic covariates. Penalized regression was chosen to prevent overfitting. Furthermore, microRNA-mRNA relationships were explored by global expression analysis, and exploited to validate results in several published cohorts (n = 592 with DRFS, n = 1,050 with recurrence-free survival). Four microRNAs were independently associated with DRFS in estrogen receptor (ER)-positive (3 novel and 1 known; miR-128a) and 6 in ER-negative (5 novel and 1 known; miR-210) cases. Of the latter, miR-342, -27b, and -150 were prognostic also in triple receptor-negative tumors. Coordinated expression of predicted target genes and prognostic microRNAs strengthened these results, most significantly for miR-210, -128a, and -27b, whose targets were prognostic in meta-analysis of several cohorts. In addition, miR-210 and -128a showed coordinated expression with their cognate pri-microRNAs, which were themselves prognostic in independent cohorts. Our integrated microRNA-mRNA global profiling approach has identified microRNAs independently associated with prognosis in breast cancer. Furthermore, it has validated known and predicted microRNA-target interactions, and elucidated their association with key pathways that could represent novel therapeutic targets.
Cancer Research | 2011
Richard C.A. Sainson; Chern Ein Oon; Helen Turley; Russell Leek; Helen Sheldon; Esther Bridges; Wen Shi; Cameron Snell; Emma T. Bowden; Herren Wu; Partha S. Chowdhury; Angela J. Russell; Craig P. Montgomery; Richard Poulsom; Adrian L. Harris
Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.
Clinical Cancer Research | 2012
Alan McIntyre; Shalini Patiar; Simon Wigfield; Ioanna Ledaki; Helen Turley; Russell Leek; Cameron Snell; Kevin C. Gatter; William S. Sly; Richard D. Vaughan-Jones; Pawel Swietach; Adrian L. Harris
Purpose: Bevacizumab, an anti-VEGFA antibody, inhibits the developing vasculature of tumors, but resistance is common. Antiangiogenic therapy induces hypoxia and we observed increased expression of hypoxia-regulated genes, including carbonic anhydrase IX (CAIX), in response to bevacizumab treatment in xenografts. CAIX expression correlates with poor prognosis in most tumor types and with worse outcome in bevacizumab-treated patients with metastatic colorectal cancer, malignant astrocytoma, and recurrent malignant glioma. Experimental Design: We knocked down CAIX expression by short hairpin RNA in a colon cancer (HT29) and a glioblastoma (U87) cell line which have high hypoxic induction of CAIX and overexpressed CAIX in HCT116 cells which has low CAIX. We investigated the effect on growth rate in three-dimensional (3D) culture and in vivo, and examined the effect of CAIX knockdown in combination with bevacizumab. Results: CAIX expression was associated with increased growth rate in spheroids and in vivo. Surprisingly, CAIX expression was associated with increased necrosis and apoptosis in vivo and in vitro. We found that acidity inhibits CAIX activity over the pH range found in tumors (pK = 6.84), and this may be the mechanism whereby excess acid self-limits the build-up of extracellular acid. Expression of another hypoxia inducible CA isoform, CAXII, was upregulated in 3D but not two-dimensional culture in response to CAIX knockdown. CAIX knockdown enhanced the effect of bevacizumab treatment, reducing tumor growth rate in vivo. Conclusion: This work provides evidence that inhibition of the hypoxic adaptation to antiangiogenic therapy enhances bevacizumab treatment and highlights the value of developing small molecules or antibodies which inhibit CAIX for combination therapy. Clin Cancer Res; 18(11); 3100–11. ©2012 AACR.
Cancer Medicine | 2013
Tom Donnem; Jiangting Hu; Mary Ferguson; Omanma Adighibe; Cameron Snell; Adrian L. Harris; Kevin C. Gatter; Francesco Pezzella
Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co‐option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co‐option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10–30% of the tumors are reported to use this alternative blood supply. In addition, vessel co‐option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co‐option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co‐option with specific examples of vessel co‐option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.
Cancer Cell | 2013
Massimo Masiero; Filipa Costa Simões; Hee Dong Han; Cameron Snell; Tessa Peterkin; Esther Bridges; Lingegowda S. Mangala; Sherry Yen Yao Wu; Sunila Pradeep; Demin Li; Cheng Han; Heather J. Dalton; Gabriel Lopez-Berestein; Jurriaan B. Tuynman; Neil Mortensen; Roger Patient; Anil K. Sood; Alison H. Banham; Adrian L. Harris; Francesca M. Buffa
Summary Limited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation.
Cancer Research | 2016
Alan McIntyre; Alzbeta Hulikova; Ioanna Ledaki; Cameron Snell; Dean C. Singleton; Graham Steers; Peter T. Seden; Dylan Marc Jones; Esther Bridges; Simon Wigfield; Angela J. Russell; Pawel Swietach; Adrian L. Harris
Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR.
PLOS ONE | 2014
Cameron Snell; Helen Turley; Alan McIntyre; Demin Li; Massimo Masiero; Christopher J. Schofield; Kevin C. Gatter; Adrian L. Harris; Francesco Pezzella
The stabilisation of HIF-α is central to the transcriptional response of animals to hypoxia, regulating the expression of hundreds of genes including those involved in angiogenesis, metabolism and metastasis. HIF-α is degraded under normoxic conditions by proline hydroxylation, which allows for recognition and ubiquitination by the von-Hippel-Lindau (VHL) E3 ligase complex. The aim of our study was to investigate the posttranslational modification of HIF-1α in tumours, to assess whether there are additional mechanisms besides reduced hydroxylation leading to stability. To this end we optimised antibodies against the proline-hydroxylated forms of HIF-1α for use in formalin fixed paraffin embedded (FFPE) immunohistochemistry to assess effects in tumour cells in vivo. We found that HIF-1α proline-hydroxylated at both VHL binding sites (Pro402 and Pro564), was present in hypoxic regions of a wide range of tumours, tumour xenografts and in moderately hypoxic cells in vitro. Staining for hydroxylated HIF-1α can identify a subset of breast cancer patients with poorer prognosis and may be a better marker than total HIF-1α levels. The expression of unhydroxylated HIF-1α positively correlates with VHL in breast cancer suggesting that VHL may be rate-limiting for HIF degradation. Our conclusions are that the degradation of proline-hydroxylated HIF-1α may be rate-limited in tumours and therefore provides new insights into mechanisms of HIF upregulation. Persistence of proline-hydroxylated HIF-1α in perinecrotic areas suggests there is adequate oxygen to support prolyl hydroxylase domain (PHD) activity and proline-hydroxylated HIF-1α may be the predominant form associated with the poorer prognosis that higher levels of HIF-1α confer.
Cell Metabolism | 2018
Simon Lord; Wei-Chen Cheng; Dan Liu; Edoardo Gaude; Syed Haider; Tom Metcalf; Neel Patel; Eugene J. Teoh; Fergus V. Gleeson; Kevin M. Bradley; Simon Wigfield; Christos Zois; Daniel R. McGowan; Mei-Lin Ah-See; Alastair M. Thompson; Anand Sharma; Luc Bidaut; Michael Pollak; Pankaj G. Roy; Fredrik Karpe; Tim James; Ruth English; Rosie Adams; Leticia Campo; Lisa Ayers; Cameron Snell; Ioannis Roxanis; Christian Frezza; John D. Fenwick; Francesca M. Buffa
Summary Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer. We show metformin reduces the levels of mitochondrial metabolites, activates multiple mitochondrial metabolic pathways, and increases 18-FDG flux in tumors. Two tumor groups are identified with distinct metabolic responses, an OXPHOS transcriptional response (OTR) group for which there is an increase in OXPHOS gene transcription and an FDG response group with increased 18-FDG uptake. Increase in proliferation, as measured by a validated proliferation signature, suggested that patients in the OTR group were resistant to metformin treatment. We conclude that mitochondrial response to metformin in primary breast cancer may define anti-tumor effect.
Chinese Journal of Cancer | 2016
Omanma Adighibe; Russell Leek; Marta Fernandez-Mercado; Jiangting Hu; Cameron Snell; Kevin C. Gatter; Adrian L. Harris; Francesco Pezzella
BackgroundAngiogenesis is not essential for tumours to develop and expand, as cancer can also grow in a non-angiogenic fashion, but why this type of growth occurs is unknown. Surprisingly, our data from mRNA transcription profiling did not show any differences in the classical angiogenic pathways, but differences were observed in mitochondrial metabolic pathways, suggesting a key role for metabolic reprogramming. We then validated these results with mRNA profiling by investigating differential protein expression via immunohistochemistry in angiogenic and non-angiogenic non-small cell lung cancers (NSCLCs).MethodsImmunohistochemical staining for 35 angiogenesis- and hypoxia-related biomarkers were performed on a collection of 194 angiogenic and 73 non-angiogenic NSCLCs arranged on tissue microarrays. Sequencing of P53 was performed with frozen tissue samples of NSCLC.ResultsThe non-angiogenic tumours were distinguished from the angiogenic ones by having higher levels of proteins associated with ephrin pathways, mitochondria, cell biogenesis, and hypoxia-inducible factor 1 (HIF1) regulation by oxygen and transcription of HIF-controlled genes but lower levels of proteins involved in the stroma, cell–cell signaling and adhesion, integrins, and Delta-Notch and epidermal growth factor (EGF)-related signaling. However, proteins classically associated with angiogenesis were present in both types of tumours at very comparable levels. Cytoplasmic expression of P53 was strongly associated with non-angiogenic tumours. A pilot investigation showed that P53 mutations were observed in 32.0% of angiogenic cases but in 71.4% of non-angiogenic tumours.ConclusionsOur observations thus far indicate that both angiogenic and non-angiogenic tumours experience hypoxia/HIF and vascular endothelial growth factor (VEGF) pathway protein expression in a comparable fashion. However, angiogenesis does not ensue in the non-angiogenic tumours. Surprisingly, metabolic reprogramming seems to distinguish these two types of neoplastic growth. On the basis of these results, we raise the hypothesis that in some, but not in all cases, initial tissue remodeling and/or inflammation could be one of the secondary steps necessary to trigger angiogenesis. In the non-angiogenic tumours, in which neovascularisation fails to occur, HIF pathway activation could be the driving force toward metabolic reprogramming.
Cell Metabolism | 2012
Elena Favaro; Karim Bensaad; Mei G. Chong; Daniel A. Tennant; David J. P. Ferguson; Cameron Snell; Graham Steers; Helen Turley; Ulrich L. Günther; Francesca M. Buffa; Alan McIntyre; Adrian L. Harris