Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilla Bellone is active.

Publication


Featured researches published by Camilla Bellone.


Neuron | 2007

Rapid Bidirectional Switching of Synaptic NMDA Receptors

Camilla Bellone; Roger A. Nicoll

Synaptic NMDA-type glutamate receptors (NMDARs) play important roles in synaptic plasticity, brain development, and pathology. In the last few years, the view of NMDARs as relatively fixed components of the postsynaptic density has changed. A number of studies have now shown that both the number of receptors and their subunit compositions can be altered. During development, the synaptic NMDARs subunit composition changes, switching from predominance of NR2B-containing to NR2A-containing receptors, but little is known about the mechanisms involved in this developmental process. Here, we report that, depending on the pattern of NMDAR activation, the subunit composition of synaptic NMDARs is under extremely rapid, bidirectional control at neonatal synapses. This switching, which is at least as rapid as that seen with AMPARs, will have immediate and dramatic consequences on the integrative capacity of the synapse.


Nature Neuroscience | 2013

In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons

Andres De la Rossa; Camilla Bellone; Bruno James Golding; Ilaria Vitali; Jonathan Moss; Nicolas Toni; Christian Lüscher; Denis Jabaudon

The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron–specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.


Nature Neuroscience | 2011

Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area

Manuel Mameli; Camilla Bellone; Matthew T. C. Brown; Christian Lüscher

The manner in which drug-evoked synaptic plasticity affects reward circuits remains largely elusive. We found that cocaine reduced NMDA receptor excitatory postsynaptic currents and inserted GluA2–lacking AMPA receptors in dopamine neurons of mice. Consequently, a stimulation protocol pairing glutamate release with hyperpolarizing current injections further strengthened synapses after cocaine treatment. Our data suggest that early cocaine-evoked plasticity in the ventral tegmental area inverts the rules for activity-dependent plasticity, eventually leading to addictive behavior.


Cellular and Molecular Life Sciences | 2008

Mechanisms of synaptic depression triggered by metabotropic glutamate receptors

Camilla Bellone; Christian Lüscher; Manuel Mameli

Abstract.Glutamate, by activation of metabotropic receptors (mGluRs), can lead to a reduction of synaptic efficacy at many synapses. These forms of synaptic plasticity are referred to as long-term depression (mGluR-LTD). We will distinguish between mGluR-LTD induced by pre- or postsynaptic receptors and mGluR-LTD induced by the locus of the expression mechanism of the synaptic depression. We will also review recent evidence that mGluR-mediated responses themselves are subject to depression, which may constitute a form of metaplasticity.


European Journal of Neuroscience | 2005

mGluRs induce a long‐term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors

Camilla Bellone; Christian Lüscher

Excitatory glutamatergic synapses on dopamine (DA) neurons of the ventral tegmental area (VTA) undergo long‐lasting changes during conditioning of natural rewards and in response to drug exposure. It has been suggested that the ensuing context‐dependent behavioural changes are associated with an increased efficacy of synaptic afferents determined by the balance of long‐term potentiation (LTP) and long‐term depression (LTD). However, the molecular nature of the forms of LTP/LTD involved remains elusive. Here, using acute rat brain slices, we describe a form of long‐term depression (LTD) that was engaged by synaptic activity or exogenous agonists activating group I metabotropic glutamate receptors (mGluR) and was sensitive to mGluR1 antagonists. Prior to mGluR‐LTD, AMPAR mediated excitatory postsynaptic currents (EPSCs) showed strong rectification at positive potentials and were sensitive to Joro spider toxin (JST), a selective blocker of GluR2‐lacking AMPARs. After mGluR‐LTD, AMPAR EPSCs had linear current‐voltage relations and became insensitive to JST. We conclude that activation of mGluR1s triggers a redistribution exchanging native receptors for GluR2 containing AMPARs, ultimately causing LTD that may oppose pathological neuroadaptation.


Journal of Neurochemistry | 2002

Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats

Fabrizio Gardoni; Amer Kamal; Camilla Bellone; G.J. Biessels; Geert M.J. Ramakers; Flaminio Cattabeni; W.H. Gispen; M. Di Luca

In animal models of diabetes mellitus, such as the streptozotocin‐diabetic rat (STZ‐rat), spatial learning impairments develop in parallel with a reduced expression of long‐term potentiation (LTP) and enhanced expression of long‐term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ‐diabetes and insulin treatment on the hippocampal post‐synaptic glutamate N‐methyl‐d‐aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post‐synaptic density (PSD) fraction. In addition, the functional properties of the NMDA‐receptor complex were examined. One month of STZ‐diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr‐dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and αCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ‐rats compared with age‐matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ‐rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII–NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post‐synaptic glutamatergic transmission is␣related to deficits in learning and plasticity in this animal model.


Journal of Biological Chemistry | 2003

CaMKII-dependent Phosphorylation Regulates SAP97/NR2A Interaction

Fabrizio Gardoni; Daniela Mauceri; Chiara Fiorentini; Camilla Bellone; Cristina Missale; Flaminio Cattabeni; Monica Di Luca

Synapse-associated protein 97 (SAP97), a member of membrane-associated guanylate kinase protein family, has been implicated in the processes of targeting ionotropic glutamate receptors at postsynaptic sites. Here we show that SAP97 is enriched at the postsynaptic density where it co-localizes with both ionotropic glutamate receptors and downstream signaling proteins such as Ca2+/calmodulin-dependent protein kinase II (CaMKII). SAP97 and αCaMKII display a high co-localization pattern in hippocampal neurons as well as in transfected COS-7 cells. Metabolic labeling of hippocampal cultures reveals that N-methyl-d-aspartic acid (NMDA) receptor activation induces CaMKII-dependent phosphorylation of SAP97; co-incubation with the CaMKII-specific inhibitor KN-93 reduces SAP97 phosphorylation to basal levels. Our results show that SAP97 directly interacts with the NR2A subunit of NMDA receptor both in an in vitro “pull-out” assay and in co-immunoprecipitation experiments from homogenates and synaptosomes purified from hippocampal rat tissue. Interestingly, in the postsynaptic density fraction, SAP97 fails to co-precipitate with NR2A. We show here that SAP97 is directly associated with NR2A through its PDZ1 domain, and CaMKII-dependent phosphorylation of SAP97-Ser-232 disrupts NR2A interaction both in an in vitro pull-out assay and in transfected COS-7 cells. Moreover, expression of SAP97(S232D) mutant has effects similar to those observed upon constitutively activating CaMKII. Our findings suggest that SAP97/NR2A interaction is regulated by CaMKII-dependent phosphorylation and provide a novel mechanism for the regulation of synaptic targeting of NMDA receptor subunits.


Neurobiology of Disease | 2004

Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts

Francesca Colciaghi; Barbara Borroni; Martina Zimmermann; Camilla Bellone; Annalisa Longhi; Alessandro Padovani; Flaminio Cattabeni; Yves Christen; Monica Di Luca

Clinical trials report that Ginkgo biloba extracts (e.g., EGb761) reduce cognitive symptoms in age-associated memory impairment and dementia, including Alzheimer disease (AD). However, the mechanisms behind their neuroprotective ability remain to be fully established. In this study, the effect of EGb761 on the amyloid precursor protein (APP) metabolism has been investigated by both in vitro and in vivo models. To this aim, alpha-secretase, the enzyme regulating the non-amyloidogenic processing of APP and the release of alphaAPPs, the alpha-secretase metabolite, were studied in superfusates of hippocampal slices after EGb761 incubation, and in hippocampi and cortices of EGb761-treated rats. PKC translocation state was evaluated as well. EGb761 increases alphaAPPs release through a PKC-independent manner. This effect is not accompanied by a modification of either APP forms or alpha-secretase expression. Moreover, EGb761 influence on alphaAPPs release was strictly dependent on treatment dosage. Our findings suggest that the benefit of EGb761 reported by previous clinical studies is underscored by a specific biological mechanism of this compound on APP metabolism, directly affecting the release of the non-amyloidogenic metabolite. Additional research will be needed to clearly define the effective clinical relevance, thus considering EGb761 as a possible supplementary treatment in dementing diseases.


Journal of Biological Chemistry | 2001

Protein Kinase C Activation Modulates α-Calmodulin Kinase II Binding to NR2A Subunit of N-Methyl-D-Aspartate Receptor Complex

Fabrizio Gardoni; Camilla Bellone; Flaminio Cattabeni; Monica Di Luca

The N-methyl-d-aspartate (NMDA) receptor subunits NR2 possess extended intracellular C-terminal domains by which they can directly interact with a large number of postsynaptic density (PSD) proteins involved in synaptic clustering and signaling. We have previously shown that PSD-associated α-calmodulin kinase II (αCaMKII) binds with high affinity to the C-terminal domain of the NR2A subunit. Here, we show that residues 1412–1419 of the cytosolic tail of NR2A are critical for αCaMKII binding, and we identify, by site directed mutagenesis, PKC-dependent phosphorylation of NR2A(Ser1416) as a key mechanism in inhibiting αCaMKII-binding and promoting dissociation of αCaMKII·NR2A complex. In addition, we show that stimulation of PKC activity in hippocampal slices either with phorbol esters or with the mGluRs specific agonisttrans-1-amino-1,3- cyclopentanedicarboxylic acid (t-ACPD) decreases αCaMKII binding to NMDA receptor complex. Thus, our data provide clues on understanding the molecular basis of a direct cross-talk between αCaMKII and PKC pathways in the postsynaptic compartment.


PLOS ONE | 2010

Drug-Driven AMPA Receptor Redistribution Mimicked by Selective Dopamine Neuron Stimulation

Matthew T. C. Brown; Camilla Bellone; Manuel Mameli; Gwenaël Labouèbe; Christina Bocklisch; Bénédicte Balland; Lionel Dahan; Rafael Luján; Karl Deisseroth; Christian Lüscher

Background Addictive drugs have in common that they cause surges in dopamine (DA) concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA). Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs) at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine) cause similar changes through their effects on the mesolimbic DA system. Methodology / Principal Findings We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT) is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. Conclusions / Significance We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

Collaboration


Dive into the Camilla Bellone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge