Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camille Chatelle is active.

Publication


Featured researches published by Camille Chatelle.


The Lancet | 2014

Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study

Johan Stender; Olivia Gosseries; Marie Aurélie Bruno; Vanessa Charland-Verville; Audrey Vanhaudenhuyse; Athena Demertzi; Camille Chatelle; Marie Thonnard; Aurore Thibaut; Lizette Heine; Andrea Soddu; Mélanie Boly; Caroline Schnakers; Albert Gjedde; Steven Laureys

BACKGROUND Bedside clinical examinations can have high rates of misdiagnosis of unresponsive wakefulness syndrome (vegetative state) or minimally conscious state. The diagnostic and prognostic usefulness of neuroimaging-based approaches has not been established in a clinical setting. We did a validation study of two neuroimaging-based diagnostic methods: PET imaging and functional MRI (fMRI). METHODS For this clinical validation study, we included patients referred to the University Hospital of Liège, Belgium, between January, 2008, and June, 2012, who were diagnosed by our unit with unresponsive wakefulness syndrome, locked-in syndrome, or minimally conscious state with traumatic or non-traumatic causes. We did repeated standardised clinical assessments with the Coma Recovery Scale-Revised (CRS-R), cerebral (18)F-fluorodeoxyglucose (FDG) PET, and fMRI during mental activation tasks. We calculated the diagnostic accuracy of both imaging methods with CRS-R diagnosis as reference. We assessed outcome after 12 months with the Glasgow Outcome Scale-Extended. FINDINGS We included 41 patients with unresponsive wakefulness syndrome, four with locked-in syndrome, and 81 in a minimally conscious state (48=traumatic, 78=non-traumatic; 110=chronic, 16=subacute). (18)F-FDG PET had high sensitivity for identification of patients in a minimally conscious state (93%, 95% CI 85-98) and high congruence (85%, 77-90) with behavioural CRS-R scores. The active fMRI method was less sensitive at diagnosis of a minimally conscious state (45%, 30-61) and had lower overall congruence with behavioural scores (63%, 51-73) than PET imaging. (18)F-FDG PET correctly predicted outcome in 75 of 102 patients (74%, 64-81), and fMRI in 36 of 65 patients (56%, 43-67). 13 of 41 (32%) of the behaviourally unresponsive patients (ie, diagnosed as unresponsive with CRS-R) showed brain activity compatible with (minimal) consciousness (ie, activity associated with consciousness, but diminished compared with fully conscious individuals) on at least one neuroimaging test; 69% of these (9 of 13) patients subsequently recovered consciousness. INTERPRETATION Cerebral (18)F-FDG PET could be used to complement bedside examinations and predict long-term recovery of patients with unresponsive wakefulness syndrome. Active fMRI might also be useful for differential diagnosis, but seems to be less accurate. FUNDING The Belgian National Funds for Scientific Research (FNRS), Fonds Léon Fredericq, the European Commission, the James McDonnell Foundation, the Mind Science Foundation, the French Speaking Community Concerted Research Action, the University of Copenhagen, and the University of Liège.


Pain | 2010

The nociception coma scale: A new tool to assess nociception in disorders of consciousness.

Caroline Schnakers; Camille Chatelle; Audrey Vanhaudenhuyse; Steve Majerus; Didier Ledoux; Mélanie Boly; Marie-Aurélie Bruno; Pierre Boveroux; Athena Demertzi; Gustave Moonen; Steven Laureys

&NA; Assessing behavioral responses to nociception is difficult in severely brain‐injured patients recovering from coma. We here propose a new scale developed for assessing nociception in vegetative (VS) and minimally conscious (MCS) coma survivors, the Nociception Coma Scale (NCS), and explore its concurrent validity, inter‐rater agreement and sensitivity. Concurrent validity was assessed by analyzing behavioral responses of 48 post‐comatose patients to a noxious stimulation (pressure applied to the fingernail) (28 VS and 20 MCS; age range 20–82 years; 17 of traumatic etiology). Patients’ were assessed using the NCS and four other scales employed in non‐communicative patients: the ‘Neonatal Infant Pain Scale’ (NIPS) and the ‘Faces, Legs, Activity, Cry, Consolability’ (FLACC) used in newborns; and the ‘Pain Assessment In Advanced Dementia Scale’ (PAINAD) and the ‘Checklist of Non‐verbal Pain Indicators’ (CNPI) used in dementia. For the establishment of inter‐rater agreement, fifteen patients were concurrently assessed by two examiners. Concurrent validity, assessed by Spearman rank order correlations between the NCS and the four other validated scales, was good. Cohens kappa analyses revealed a good to excellent inter‐rater agreement for the NCS total and subscore measures, indicating that the scale yields reproducible findings across examiners. Finally, a significant difference between NCS total scores was observed as a function of diagnosis (i.e., VS or MCS). The NCS constitutes a sensitive clinical tool for assessing nociception in severely brain‐injured patients. This scale constitutes the first step to a better management of patients recovering from coma.


Brain Injury | 2013

Spasticity after stroke: physiology, assessment and treatment.

Aurore Thibaut; Camille Chatelle; Erik Ziegler; Marie-Aurélie Bruno; Steven Laureys; Olivia Gosseries

Abstract Background: Spasticity following a stroke occurs in about 30% of patients. The mechanisms underlying this disorder, however, are not well understood. Method: This review aims to define spasticity, describe hypotheses explaining its development after a stroke, give an overview of related neuroimaging studies as well as a description of the most common scales used to quantify the degree of spasticity and finally explore which treatments are currently being used to treat this disorder. Results: The lack of consensus is highlighted on the basis of spasticity and the associated absence of guidelines for treatment, use of drugs and rehabilitation programmes. Conclusions: Future studies require controlled protocols to determine the efficiency of pharmacological and non-pharmacological treatments for spasticity. Neuroimaging may help predict the occurrence of spasticity and could provide insight into its neurological basis.


Journal of Rehabilitation Medicine | 2012

METABOLIC ACTIVITY IN EXTERNAL AND INTERNAL AWARENESS NETWORKS IN SEVERELY BRAIN-DAMAGED PATIENTS

Aurore Thibaut; Marie-Aurélie Bruno; Camille Chatelle; Olivia Gosseries; Audrey Vanhaudenhuyse; Athina Demertzi; Caroline Schnakers; Marie Thonnard; Vanessa Charland; Claire Bernard; Mohamed Ali Bahri; Christophe Phillips; Mélanie Boly; Roland Hustinx; Steven Laureys

OBJECTIVE An extrinsic cerebral network (encompassing lateral frontoparietal cortices) related to external/sensory awareness and an intrinsic midline network related to internal/self-awareness have been identified recently. This study measured brain metabolism in both networks in patients with severe brain damage. DESIGN Prospective [18F]-fluorodeoxyglucose-positron emission tomography and Coma Recovery Scale-Revised assessments in a university hospital setting. SUBJECTS Healthy volunteers and patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS), minimally conscious state (MCS), emergence from MCS (EMCS), and locked-in syndrome (LIS). RESULTS A total of 70 patients were included in the study: 24 VS/UWS, 28 MCS, 10 EMCS, 8 LIS and 39 age-matched controls. VS/UWS showed metabolic dysfunction in extrinsic and intrinsic networks and thalami. MCS showed dysfunction mostly in intrinsic network and thalami. EMCS showed impairment in posterior cingulate/retrosplenial cortices. LIS showed dysfunction only in infratentorial regions. Coma Recovery Scale-Revised total scores correlated with metabolic activity in both extrinsic and part of the intrinsic network and thalami. CONCLUSION Progressive recovery of extrinsic and intrinsic awareness network activity was observed in severely brain-damaged patients, ranging from VS/UWS, MCS, EMCS to LIS. The predominance of intrinsic network impairment in MCS could reflect altered internal/self-awareness in these patients, which is difficult to quantify at the bedside.


Neurology | 2012

Relationship between etiology and covert cognition in the minimally conscious state.

Damian Cruse; Srivas Chennu; Camille Chatelle; Davinia Fernández-Espejo; Tristan A. Bekinschtein; John D. Pickard; Steven Laureys; Adrian M. Owen

Objectives: Functional neuroimaging has shown that the absence of externally observable signs of consciousness and cognition in severely brain-injured patients does not necessarily indicate the true absence of such abilities. However, relative to traumatic brain injury, nontraumatic injury is known to be associated with a reduced likelihood of regaining overtly measurable levels of consciousness. We investigated the relationships between etiology and both overt and covert cognitive abilities in a group of patients in the minimally conscious state (MCS). Methods: Twenty-three MCS patients (15 traumatic and 8 nontraumatic) completed a motor imagery EEG task in which they were required to imagine movements of their right-hand and toes to command. When successfully performed, these imagined movements appear as distinct sensorimotor modulations, which can be used to determine the presence of reliable command-following. The utility of this task has been demonstrated previously in a group of vegetative state patients. Results: Consistent and robust responses to command were observed in the EEG of 22% of the MCS patients (5 of 23). Etiology had a significant impact on the ability to successfully complete this task, with 33% of traumatic patients (5 of 15) returning positive EEG outcomes compared with none of the nontraumatic patients (0 of 8). Conclusions: The overt behavioral signs of awareness (measured with the Coma Recovery Scale–Revised) exhibited by nontraumatic MCS patients appear to be an accurate reflection of their covert cognitive abilities. In contrast, one-third of a group of traumatically injured patients in the MCS possess a range of high-level cognitive faculties that are not evident from their overt behavior.


Brain Injury | 2012

Brain–computer interfacing in disorders of consciousness

Camille Chatelle; Srivas Chennu; Quentin Noirhomme; Damian Cruse; Adrian M. Owen; Steven Laureys

Background: Recent neuroimaging research has strikingly demonstrated the existence of covert awareness in some patients with disorders of consciousness (DoC). These findings have highlighted the potential for the development of simple brain–computer interfaces (BCI) as a diagnosis in behaviourally unresponsive patients. Objectives: This study here reviews current EEG-based BCIs that hold potential for assessing and eventually assisting patients with DoC. It highlights key areas for further development that might eventually make their application feasible in this challenging patient group. Methods: The major types of BCIs proposed in the literature are considered, namely those based on the P3 potential, sensorimotor rhythms, steady state oscillations and slow cortical potentials. In each case, a brief overview of the relevant literature is provided and then their relative merits for BCI applications in DoC are considered. Results: A range of BCI designs have been proposed and tested for enabling communication in fully conscious, paralysed patients. Although many of these have potential applicability for patients with DoC, they share some key challenges that need to be overcome, including limitations of stimulation modality, feedback, user training and consistency. Conclusion: Future work will need to address the technical and practical challenges facing reliable implementation at the patients bedside.


Archives Italiennes De Biologie | 2012

Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients

Remy Lehembre; Olivia Gosseries; Zulay Lugo; Zayd Jedidi; Camille Chatelle; Bernard Sadzot; Steven Laureys; Quentin Noirhomme

Electroencephalographic activity in the context of disorders of consciousness is a swiss knife like tool that can evaluate different aspects of cognitive residual function, detect consciousness and provide a mean to communicate with the outside world without using muscular channels. Standard recordings in the neurological department offer a first global view of the electrogenesis of a patient and can spot abnormal epileptiform activity and therefore guide treatment. Although visual patterns have a prognosis value, they are not sufficient to provide a diagnosis between vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state (MCS) patients. Quantitative electroencephalography (qEEG) processes the data and retrieves features, not visible on the raw traces, which can then be classified. Current results using qEEG show that MCS can be differentiated from VS/UWS patients at the group level. Event Related Potentials (ERP) are triggered by varying stimuli and reflect the time course of information processing related to the stimuli from low-level peripheral receptive structures to high-order associative cortices. It is hence possible to assess auditory, visual, or emotive pathways. Different stimuli elicit positive or negative components with different time signatures. The presence of these components when observed in passive paradigms is usually a sign of good prognosis but it cannot differentiate VS/UWS and MCS patients. Recently, researchers have developed active paradigms showing that the amplitude of the component is modulated when the subjects attention is focused on a task during stimulus presentation. Hence significant differences between ERPs of a patient in a passive compared to an active paradigm can be a proof of consciousness. An EEG-based brain-computer interface (BCI) can then be tested to provide the patient with a communication tool. BCIs have considerably improved the past two decades. However they are not easily adaptable to comatose patients as they can have visual or auditory impairments or different lesions affecting their EEG signal. Future progress will require large databases of resting state-EEG and ERPs experiment of patients of different etiologies. This will allow the identification of specific patterns related to the diagnostic of consciousness. Standardized procedures in the use of BCIs will also be needed to find the most suited technique for each individual patient.


Aaps Journal | 2012

What about Pain in Disorders of Consciousness

Caroline Schnakers; Camille Chatelle; Athina Demertzi; Steve Majerus; Steven Laureys

The management and treatment of acute pain is very difficult in non-communicative patients with disorders of consciousness (i.e., vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state), creating an ethical dilemma for caregivers and an emotional burden among both relatives and caregivers. In this review, we summarize recent findings about the neural substrates of nociception and pain in VS/UWS patients as well as recent behavioral assessment methods of nociception specifically designed for patients in altered states of consciousness. We will finally discuss implications for pain treatment in these patients.


Expert Review of Neurotherapeutics | 2010

Assessment and detection of pain in noncommunicative severely brain-injured patients.

Caroline Schnakers; Camille Chatelle; Steve Majerus; Olivia Gosseries; Marie De Val; Steven Laureys

Detecting pain in severely brain-injured patients recovering from coma represents a real challenge. Patients with disorders of consciousness are unable to consistently or reliably communicate their feelings and potential perception of pain. However, recent studies suggest that patients in a minimally conscious state can experience pain to some extent. Pain monitoring in these patients is hence of medical and ethical importance. In this article, we will focus on the possible use of behavioral scales for the assessment and detection of pain in noncommunicative patients.


Journal of Cerebral Blood Flow and Metabolism | 2015

Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients

Johan Stender; Ron Kupers; Anders Rodell; Aurore Thibaut; Camille Chatelle; Marie Aurélie Bruno; Michael Gejl; Claire Bernard; Roland Hustinx; Steven Laureys; Albert Gjedde

The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.

Collaboration


Dive into the Camille Chatelle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mélanie Boly

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge