Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camille Mellin is active.

Publication


Featured researches published by Camille Mellin.


Global Change Biology | 2015

A review and meta‐analysis of the effects of multiple abiotic stressors on marine embryos and larvae

Rachel Przeslawski; Maria Byrne; Camille Mellin

Marine organisms are simultaneously exposed to anthropogenic stressors with likely interactive effects, including synergisms in which the combined effects of multiple stressors are greater than the sum of individual effects. Early life stages of marine organisms are potentially vulnerable to the stressors associated with global change, but identifying general patterns across studies, species and response variables is challenging. This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied. Knowledge gaps in research on multiple abiotic stressors and early life stages are also identified. The meta-analysis yielded several key results: (1) Synergistic interactions (65% of individual tests) are more common than additive (17%) or antagonistic (17%) interactions. (2) Larvae are generally more vulnerable than embryos to thermal and pH stress. (3) Survival is more likely than sublethal responses to be affected by thermal, salinity and pH stress. (4) Interaction types vary among stressors, ontogenetic stages and biological responses, but they are more consistent among phyla. (5) Ocean acidification is a greater stressor for calcifying than noncalcifying larvae. Despite being more ecologically realistic than single-factor studies, multifactorial studies may still oversimplify complex systems, and so meta-analyses of the data from them must be cautiously interpreted with regard to extrapolation to field conditions. Nonetheless, our results identify taxa with early life stages that may be particularly vulnerable (e.g. molluscs, echinoderms) or robust (e.g. arthropods, cnidarians) to abiotic stress. We provide a list of recommendations for future multiple stressor studies, particularly those focussed on early marine life stages.


PLOS ONE | 2011

Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis.

Camille Mellin; Steve Delean; Julian Caley; Graham J. Edgar; Mark G. Meekan; Roland Pitcher; Rachel Przeslawski; Alan Williams

The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P) and as the predictability of targets using surrogates (R 2). A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R 2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa) was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R 2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.


Marine Pollution Bulletin | 2009

Remote sensing and fish–habitat relationships in coral reef ecosystems: Review and pathways for multi-scale hierarchical research

Camille Mellin; Serge Andréfouët; Michel Kulbicki; Mayeul Dalleau; Laurent Vigliola

Understanding spatial variations in alpha, beta, and gamma coral reef fish diversity, as well as both local community and regional metacommunity structures, is critical for science and conservation of coral reef ecosystems. This quest implies that fish-habitat relationships are characterized across different spatial scales. Remote sensing allows now for a routine description of habitats from global-regional to detailed reef scales, thus theoretically offering access to hierarchical spatial analysis at multiple scales. To judge the progress in using remotely sensed habitat variables for reef fish study, existing peer-reviewed papers on the subject are reviewed. We tabulated the significant fish-habitat relationships given the different study sites, fish and habitat variables, statistical analysis, sampling efforts and scales. Studies generally do not corroborate each other. Instead, the exercise provides a diversity of thematic results from which lessons remain equivocal. It is thus justified to recommend more systematic and hierarchical remote-sensing based research in the future. We advocate the use of remote-sensing early in the design of the fish study, as part of a coherent conceptual scheme spanning all spatial scales.


Ecology Letters | 2016

Marine protected areas increase resilience among coral reef communities

Camille Mellin; M. Aaron MacNeil; Alistair J. Cheal; Michael J. Emslie; M. Julian Caley

With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australias Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects.


Ecology | 2010

Reef size and isolation determine the temporal stability of coral reef fish populations

Camille Mellin; Cindy J. Huchery; M. Julian Caley; Mark G. Meekan

Temporal variance in species abundance, a potential driver of extinction, is linked to mean abundance through Taylors power law, the empirical observation of a linear log-log relationship with a slope between 1 and 2 for most species. Here we test the idea that the slope of Taylors power law can vary both among species and spatially as a function of habitat area and isolation. We used the worlds most extensive database of coral reef fish communities comprising a 15-year series of fish abundances on 43 reefs of Australias Great Barrier Reef. Greater temporal variances were observed at small and isolated reefs, and lower variances at large and connected ones. The combination of reef area and isolation was associated with an even greater effect on temporal variances, indicating strong empirical support for the idea that populations on small and isolated reefs will succumb more frequently to local extinction via higher temporal variability, resulting in lower resilience at the community level. Based on these relationships, we constructed a regional predictive map of the dynamic fragility of coral reef fish assemblages on the Great Barrier Reef.


Science of The Total Environment | 2015

A new framework for selecting environmental surrogates

David B. Lindenmayer; Jennifer C. Pierson; Philip S. Barton; Maria Beger; Cristina Branquinho; Aram J. K. Calhoun; Tim Caro; Hamish S. Greig; John E. Gross; Jani Heino; Malcolm L. Hunter; Peter W. Lane; Catherine Longo; Kathy Martin; William H. McDowell; Camille Mellin; Hanna Salo; Ayesha I. T. Tulloch; Martin J. Westgate

Surrogate concepts are used in all sub-disciplines of environmental science. However, controversy remains regarding the extent to which surrogates are useful for resolving environmental problems. Here, we argue that conflicts about the utility of surrogates (and the related concepts of indicators and proxies) often reflect context-specific differences in trade-offs between measurement accuracy and practical constraints. By examining different approaches for selecting and applying surrogates, we identify five trade-offs that correspond to key points of contention in the application of surrogates. We then present an 8-step Adaptive Surrogacy Framework that incorporates cross-disciplinary perspectives from a wide spectrum of the environmental sciences, aiming to unify surrogate concepts across disciplines and applications. Our synthesis of the science of surrogates is intended as a first step towards fully leveraging knowledge accumulated across disciplines, thus consolidating lessons learned so that they may be accessible to all those operating in different fields, yet facing similar hurdles.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Strong but opposing β-diversity-stability relationships in coral reef fish communities.

Camille Mellin; Damien A. Fordham; M. J. Caley

The ‘diversity–stability hypothesis’, in which higher species diversity within biological communities buffers the risk of ecological collapse, is now generally accepted. However, empirical evidence for a relationship between β-diversity (spatial turnover in community structure) and temporal stability in community structure remains equivocal, despite important implications for theoretical ecology and conservation biology. Here, we report strong β-diversity–stability relationships across a broad sample of fish taxa on Australias Great Barrier Reef. These relationships were robust to random sampling error and spatial and environmental factors, such as latitude, reef size and isolation. While β-diversity was positively associated with temporal stability at the community level, the relationship was negative for some taxa, for example surgeonfishes (Acanthuridae), one of the most abundant reef fish families. This demonstrates that the β-diversity–stability relationship should not be indiscriminately assumed for all taxa, but that a species’ risk of extirpation in response to disturbance is likely to be taxon specific and trait based. By combining predictions of spatial and temporal turnover across the study area with observations in marine-protected areas, we conclude that protection alone does not necessarily confer temporal stability and that taxon-specific considerations will improve the outcome of conservation efforts.


Nature Communications | 2016

Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges

Camille Mellin; David Mouillot; Michel Kulbicki; Tim R. McClanahan; Laurent Vigliola; Russell E. Brainard; Pascale Chabanet; Graham J. Edgar; Damien A. Fordham; Alan M. Friedlander; Valeriano Parravicini; Ana M. M. Sequeira; Rick D. Stuart-Smith; Laurent Wantiez; M. J. Caley

Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions.


Ecological Applications | 2012

Multi-scale marine biodiversity patterns inferred efficiently from habitat image processing

Camille Mellin; Lael Parrott; Serge Andréfouët; M. Aaron MacNeil; M. Julian Caley

Cost-effective proxies of biodiversity and species abundance, applicable across a range of spatial scales, are needed for setting conservation priorities and planning action. We outline a rapid, efficient, and low-cost measure of spectral signal from digital habitat images that, being an effective proxy for habitat complexity, correlates with species diversity and requires little image processing or interpretation. We validated this method for coral reefs of the Great Barrier Reef (GBR), Australia, across a range of spatial scales (1 m to 10 km), using digital photographs of benthic communities at the transect scale and high-resolution Landsat satellite images at the reef scale. We calculated an index of image-derived spatial heterogeneity, the mean information gain (MIG), for each scale and related it to univariate (species richness and total abundance summed across species) and multivariate (species abundance matrix) measures of fish community structure, using two techniques that account for the hierarchical structure of the data: hierarchical (mixed-effect) linear models and distance-based partial redundancy analysis. Over the length and breadth of the GBR, MIG alone explained up to 29% of deviance in fish species richness, 33% in total fish abundance, and 25% in fish community structure at multiple scales, thus demonstrating the possibility of easily and rapidly exploiting spatial information contained in digital images to complement existing methods for inferring diversity and abundance patterns among fish communities. Thus, the spectral signal of unprocessed remotely sensed images provides an efficient and low-cost way to optimize the design of surveys used in conservation planning. In data-sparse situations, this simple approach also offers a viable method for rapid assessment of potential local biodiversity, particularly where there is little local capacity in terms of skills or resources for mounting in-depth biodiversity surveys.


PLOS ONE | 2012

Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate

Bayden D. Russell; Sean D. Connell; Camille Mellin; Barry W. Brook; Owen W. Burnell; Damien A. Fordham

The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery.

Collaboration


Dive into the Camille Mellin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. M. Sequeira

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark G. Meekan

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

M. J. Caley

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

M. Julian Caley

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Dominique Ponton

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge