Camillo Mariani
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camillo Mariani.
Physical Review D | 2011
Y. Nakajima; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; G. Cheng; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; J.J. Gómez-Cadenas; P. Guzowski; Andrew J. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; Y. Kurimoto; W. C. Louis; P. Loverre; L. Ludovici; K. Mahn; Camillo Mariani; S. Masuike
The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.
Physical Review D | 2010
Y. Kurimoto; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; G. Cheng; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; J. J. Gomez-Cadenas; P. Guzowski; Andrew J. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; W. C. Louis; P. Loverre; L. Ludovici; K. Mahn; Camillo Mariani; S. Masuike; K. Matsuoka
We acknowledge the Physics Department at Chonnam National University, Dongshin University, and Seoul National University for the loan of parts used in SciBar and the help in the assembly of SciBar. We wish to thank the Physics Departments at the University of Rochester and Kansas State University for the loan of Hamamatsu PMTs used in the MRD. We gratefully acknowledge support from Fermilab as well as various grants, contracts and fellowships from the MEXT and JSPS (Japan), the INFN (Italy), the Ministry of Science and Innovation and CSIC (Spain), the STFC (UK), and the DOE and NSF (USA). This work was supported by MEXT and JSPS with the Grant-in-Aid for Scientific Research A 19204026, Young Scientists S 20674004, Young Scientists B 18740145, Scientific Research on Priority Areas “New Developments of Flavor Physics”, and the global COE program “The Next Generation of Physics, Spun from Universality and Emergence”. The project was supported by the Japan/U.S. Cooperation Program in the field of High Energy Physics and by JSPS and NSF under the Japan-U.S. Cooperative Science Program.
Physical Review D | 2014
Pilar Coloma; Patrick Huber; Camillo Mariani; Chun-Min Jen
In neutrino oscillation experiments, neutrino interactions at the detector are simulated using event generators which attempt to reflect our understanding of nuclear physics. We study the impact of different neutrino interactions and nuclear models on the determination of neutrino oscillation parameters. We use two independent neutrino event generators, Generates Events for Neutrino Interaction Experiments (GENIE) 2.8.0 and Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) 2.6, and apply them to a setup with a conventional neutrino beam aiming at a water \ifmmode \check{C}\else \v{C}\fi{}erenkov detector, for which only the charged-current quasielastic--like sample is selected. Subsequently, we perform a fit to the oscillation parameters in the
Physical Review D | 2010
Y. Kurimoto; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; G. Cheng; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; J. J. Gomez-Cadenas; P. Guzowski; Andrew J. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; W. C. Louis; P. Loverre; L. Ludovici; K. Mahn; Camillo Mariani; S. Masuike; K. Matsuoka
{\ensuremath{\nu}}_{\ensuremath{\mu}}
Physical Review D | 2015
Artur M. Ankowski; Omar Benhar; Pilar Coloma; Patrick Huber; Chun Min Jen; Camillo Mariani; Davide Meloni; Erica Vagnoni
disappearance channel.
Physical Review D | 2016
Artur M. Ankowski; Omar Benhar; Camillo Mariani; Erica Vagnoni
The SciBooNE Collaboration reports a measurement of neutral current coherent {pi}{sup 0} production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive {pi}{sup 0} production has been improved by detecting recoil protons from resonant {pi}{sup 0} production. We measure the ratio of the neutral current coherent {pi}{sup 0} production to total charged current cross sections to be (1.16{+-}0.24)x10{sup -2}. The ratio of charged current coherent {pi}{sup +} to neutral current coherent {pi}{sup 0} production is calculated to be 0.14{sub -0.28}{sup +0.30}, using our published charged current coherent pion measurement.
Physical Review D | 2015
Artur M. Ankowski; Pilar Coloma; Patrick Huber; Camillo Mariani; Erica Vagnoni
To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two
Journal of Physics G | 2017
Artur M. Ankowski; Camillo Mariani
{\ensuremath{\nu}}_{\ensuremath{\mu}}\ensuremath{\rightarrow}{\ensuremath{\nu}}_{\ensuremath{\mu}}
arXiv: High Energy Physics - Experiment | 2014
A. A. Aguilar-Arevalo; B. C. Brown; L. Bugel; G. Cheng; E. Church; J. M. Conrad; R. Dharmapalan; Z. Djurcic; D. A. Finley; R. Ford; F. G. Garcia; G. T. Garvey; J. Grange; W. Huelsnitz; C. Ignarra; R. Imlay; R. A. Johnson; G. Karagiorgi; T. Katori; T. Kobilarcik; W. C. Louis; Camillo Mariani; W. Marsh; G. B. Mills; J. Mirabal; C. D. Moore; J. Mousseau; P. Nienaber; B. Osmanov; Z. Pavlovic
disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an
Journal of Physics: Conference Series | 2009
Camillo Mariani
\mathcal{O}(10%)