Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilo Rojas is active.

Publication


Featured researches published by Camilo Rojas.


Cancer Research | 2010

Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1

Meghan Joyce Seltzer; Bryson D. Bennett; Avadhut D. Joshi; Ping Gao; Ajit G. Thomas; Dana Ferraris; Takashi Tsukamoto; Camilo Rojas; Barbara S. Slusher; Joshua D. Rabinowitz; Chi V. Dang; Gregory J. Riggins

Mutation at the R132 residue of isocitrate dehydrogenase 1 (IDH1), frequently found in gliomas and acute myelogenous leukemia, creates a neoenzyme that produces 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG). We sought to therapeutically exploit this neoreaction in mutant IDH1 cells that require α-KG derived from glutamine. Glutamine is converted to glutamate by glutaminase and further metabolized to α-KG. Therefore, we inhibited glutaminase with siRNA or the small molecule inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and found slowed growth of glioblastoma cells expressing mutant IDH1 compared with those expressing wild-type IDH1. Growth suppression of mutant IDH1 cells by BPTES was rescued by adding exogenous α-KG. BPTES inhibited glutaminase activity, lowered glutamate and α-KG levels, and increased glycolytic intermediates while leaving total 2-HG levels unaffected. The ability to selectively slow growth in cells with IDH1 mutations by inhibiting glutaminase suggests a unique reprogramming of intermediary metabolism and a potential therapeutic strategy.


Biochemical Journal | 2007

Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES)

Mary M. Robinson; Steven J. McBryant; Takashi Tsukamoto; Camilo Rojas; Dana Ferraris; Sean K. Hamilton; Jeffrey C. Hansen; Norman P. Curthoys

The release of GA (mitochondrial glutaminase) from neurons following acute ischaemia or during chronic neurodegenerative diseases may contribute to the propagation of glutamate excitotoxicity. Thus an inhibitor that selectively inactivates the released GA may limit the accumulation of excess glutamate and minimize the loss of neurological function that accompanies brain injury. The present study examines the mechanism of inactivation of rat KGA (kidney GA isoform) by the small-molecule inhibitor BPTES [bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide]. BPTES is a potent inhibitor of KGA, but not of the liver GA isoform, glutamate dehydrogenase or gamma-glutamyl transpeptidase. Kinetic studies indicate that, with respect to glutamine, BPTES has a K(i) of approx. 3 microM. Moreover, these studies suggest that BPTES inhibits the allosteric activation caused by phosphate binding and promotes the formation of an inactive complex. Gel-filtration chromatography and sedimentation-velocity analysis were used to examine the effect of BPTES on the phosphate-dependent oligomerization of KGA. This established that BPTES prevents the formation of large phosphate-induced oligomers and instead promotes the formation of a single oligomeric species with distinct physical properties. Sedimentation-equilibrium studies determined that the oligomer produced by BPTES is a stable tetramer. Taken together, the present work indicates that BPTES is a unique and potent inhibitor of rat KGA and elucidates a novel mechanism of inactivation.


The Journal of Nuclear Medicine | 2012

Biodistribution, Tumor Detection, and Radiation Dosimetry of 18F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer

Steve Cho; Kenneth L. Gage; Ronnie C. Mease; Srinivasan Senthamizhchelvan; Daniel P. Holt; Akimosa Jeffrey-Kwanisai; Christopher J. Endres; Robert F. Dannals; George Sgouros; Martin Lodge; Mario A. Eisenberger; Ronald Rodriguez; Michael A. Carducci; Camilo Rojas; Barbara S. Slusher; Alan P. Kozikowski; Martin G. Pomper

Prostate-specific membrane antigen (PSMA) is a type II integral membrane protein expressed on the surface of prostate cancer (PCa) cells, particularly in androgen-independent, advanced, and metastatic disease. Previously, we demonstrated that N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-18F-fluorobenzyl-l-cysteine (18F-DCFBC) could image an experimental model of PSMA-positive PCa using PET. Here, we describe the initial clinical experience and radiation dosimetry of 18F-DCFBC in men with metastatic PCa. Methods: Five patients with radiologic evidence of metastatic PCa were studied after the intravenous administration of 370 MBq (10 mCi) of 18F-DCFBC. Serial PET was performed until 2 h after administration. Time–activity curves were generated for selected normal tissues and metastatic foci. Radiation dose estimates were calculated using OLINDA/EXM 1.1. Results: Most vascular organs demonstrated a slow decrease in radioactivity concentration over time consistent with clearance from the blood pool, with primarily urinary radiotracer excretion. Thirty-two PET-positive suspected metastatic sites were identified, with 21 concordant on both PET and conventional imaging for abnormal findings compatible with metastatic disease. Of the 11 PET-positive sites not identified on conventional imaging, most were within the bone and could be considered suggestive for the detection of early bone metastases, although further validation is needed. The highest mean absorbed dose per unit administered radioactivity (μGy/MBq) was in the bladder wall (32.4), and the resultant effective dose was 19.9 ± 1.34 μSv/MBq (mean ± SD). Conclusion: Although further studies are needed for validation, our findings demonstrate the potential of 18F-DCFBC as a new positron-emitting imaging agent for the detection of metastatic PCa. This study also provides dose estimates for 18F-DCFBC that are comparable to those of other PET radiopharmaceuticals such as 18F-FDG.


Anesthesia & Analgesia | 2008

Palonosetron Exhibits Unique Molecular Interactions with the 5-ht3 Receptor

Camilo Rojas; Marigo Stathis; Ajit G. Thomas; Edward B. Massuda; Jesse Alt; Jie Zhang; Ed Rubenstein; Silvia Sebastiani; Sergio Cantoreggi; Solomon H. Snyder; Barbara S. Slusher

BACKGROUND: Palonosetron is a 5-HT3-receptor antagonist (5-HT3-RA) that has been shown to be superior to other 5-HT3-RAs in phase III clinical trials for the prevention of acute, delayed, and overall chemotherapy-induced nausea and vomiting. The improved clinical efficacy of palonosetron may be due, in part, to its more potent binding and longer half-life. However, these attributes alone are not sufficient to explain the results with palonosetron. We sought to elucidate additional differences among 5-HT3-RAs that could help explain the observations in the clinic. METHODS: Receptor site saturation binding experiments were performed with [3H] palonosetron, [3H] granisetron, and [3H] ondansetron to obtain the corresponding Scatchard analyses and Hill coefficients. Diagnostic equilibrium binding experiments and kinetic dissociation experiments were conducted to examine competitive versus potential allosteric interactions between ondansetron, granisetron and palonosetron and the 5-HT3 receptor. Finally, the long-term effect of the three antagonists on receptor function as measured by Ca2+ influx in HEK 293 cells expressing the 5-HT3-receptor was compared. RESULTS: Analyses of binding isotherms using both Scatchard and Hill plots suggested positive cooperativity for palonosetron and simple bimolecular binding for both granisetron and ondansetron. Equilibrium diagnostic tests discriminated differential effects of palonosetron on [3H] ligand binding indicating that palonosetron was an allosteric antagonist whereas granisetron and ondansetron were competitive antagonists. Using dissociation rate strategies, palonosetron was shown to be an allosteric modifier that accelerated the rate of dissociation from the receptor of both granisetron and ondansetron. Differences in the binding mode of palonosetron to the 5-HT3 receptor were shown to have an impact on receptor function. In these experiments, cells were incubated with each antagonist, followed by infinite dilutions and dissociation for 2.5 h; cells previously incubated with either granisetron or ondansetron showed calcium-ion influx similar to control cells that had not been exposed to a 5-HT3 receptor antagonist. In contrast, substantial inhibition of calcium-ion influx was observed in cells that had been incubated with palonosetron. CONCLUSIONS: Palonosetron exhibited allosteric binding and positive cooperativity when binding to the 5-HT3 receptor. Palonosetron also triggered functional effects that persisted beyond its binding to the 5-HT3 receptor at the cell surface. Differences in binding and effects on receptor function may be relevant to the unique beneficial actions of palonosetron. To our knowledge, this is the first report showing palonosetrons interaction with the 5-HT3 receptor at the molecular level, clearly differentiating it from other 5-HT3-RAs.


European Journal of Pharmacology | 2010

Palonosetron triggers 5-HT3 receptor internalization and causes prolonged inhibition of receptor function

Camilo Rojas; Ajit G. Thomas; Jesse Alt; Marigo Stathis; Jie Zhang; Edward B. Rubenstein; Silvia Sebastiani; Sergio Cantoreggi; Barbara S. Slusher

Palonosetron is a 5-HT(3) receptor antagonist that has demonstrated superiority in preventing both acute and delayed emesis when compared to older first generation 5-HT(3) receptor antagonists. The objective of this work was to determine if palonosetron exhibits unique molecular interactions with the 5-HT(3) receptor that could provide a scientific rationale for observed clinical efficacy differences. Previously, we showed that palonosetron exhibits allosteric binding and positive cooperativity to the 5-HT(3) receptor in contrast to ondansetron and granisetron which exhibit simple bimolecular binding. The present work shows, through several independent experiments, that palonosetron uniquely triggers 5-HT(3) receptor internalization and induces prolonged inhibition of receptor function. After 24h incubation followed by dissociation conditions, [(3)H]palonosetron remained associated with whole cells but not to cell-free membranes (P<0.001). [(3)H]Palonosetrons binding to cells was resistant to both protease and acid treatments designed to denature cell surface proteins suggesting that the receptor complex was inside the cells rather than at the surface. Cells pretreated with unlabeled palonosetron subsequently exhibited reduced cell surface 5-HT(3) receptor binding. Palonosetron-triggered receptor internalization was visualized by confocal fluorescence microscopy using cells transfected with 5-HT(3) receptor fused to enhanced cyan fluorescent protein. In contrast, granisetron and ondansetron showed minimal to no effect on receptor internalization or prolonged inhibition of receptor function. These experiments may provide a pharmacological basis for differences noted in published clinical trials comparing palonosetron to other 5-HT(3) receptor antagonists.


Journal of Medicinal Chemistry | 2008

Synthesis and Biological Evaluation of d-Amino Acid Oxidase Inhibitors

Dana Ferraris; Bridget Duvall; Yao Sen Ko; Ajit G. Thomas; Camilo Rojas; Pavel Majer; Kenji Hashimoto; Takashi Tsukamoto

D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids including d-serine, a full agonist at the glycine site of the NMDA receptor. A series of benzo[ d]isoxazol-3-ol derivatives were synthesized and evaluated as DAAO inhibitors. Among them, 5-chloro-benzo[ d]isoxazol-3-ol (CBIO) potently inhibited DAAO with an IC50 in the submicromolar range. Oral administration of CBIO in conjunction with d-serine enhanced the plasma and brain levels of d-serine in rats compared to the oral administration of d-serine alone.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models

Ghanashyam D. Ghadge; Barbara S. Slusher; Amos Bodner; Mauro C. Dal Canto; Krystyna M. Wozniak; Ajit G. Thomas; Camilo Rojas; Takashi Tsukamoto; Pavel Majer; Richard J. Miller; Anna Liza Monti; Raymond P. Roos

Approximately 10% of cases of amyotrophic lateral sclerosis (ALS), a progressive and fatal degeneration that targets motor neurons (MNs), are inherited, and ≈20% of these cases of familial ALS (FALS) are caused by mutations of copper/zinc superoxide dismutase type 1. Glutamate excitotoxicity has been implicated as a mechanism of MN death in both ALS and FALS. In this study, we tested whether a neuroprotective strategy involving potent and selective inhibitors of glutamate carboxypeptidase II (GCPII), which converts the abundant neuropeptide N-acetylaspartylglutamate to glutamate, could protect MNs in an in vitro and animal model of FALS. Data suggest that the GCPII inhibitors prevented MN cell death in both of these systems because of the resultant decrease in glutamate levels. GCPII inhibition may represent a new therapeutic target for the treatment of ALS.


Journal of Neurochemistry | 2002

Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II

Cyril Barinka; Markéta Rinnová; Pavel Šácha; Camilo Rojas; Pavel Majer; Barbara S. Slusher; Jan Konvalinka

Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a membrane peptidase expressed in a number of tissues such as kidney, prostate and brain. The brain form of GCPII (also known as NAALADase) cleaves N‐acetyl‐aspartyl glutamate to yield free glutamate. Animal model experiments show that inhibition of GCPII prevents neuronal cell death during experimental ischaemia. GCPII thus represents an important target for the treatment of neuronal damage caused by excess glutamate. In this paper we report expression of an extracellular portion of human glutamate carboxypeptidase II (amino acids 44–750) in Drosophila Schneiders cells and its purification to homogeneity. A novel assay for hydrolytic activity of recombinant human GCPII (rhGCPII), based on fluorimetric detection of released alpha‐amino groups was established, and used for its enzymological characterization. rhGCPII does not show dipeptidylpeptidase IV‐like activity assigned to the native form of the enzyme previously. Using a complete set of protected dipeptides, substrate specificity of rhGCPII was elucidated. In addition to the previously described substrates, four novel compounds, Ac‐Glu‐Met, Ac‐Asp‐Met and, surprisingly, Ac‐Ala‐Glu and Ac‐Ala‐Met were identified as substrates for GCPII, and their respective kinetic constants determined. The glycosylation of rhGCPII was found indispensable for the enzymatic activity.


Journal of Pharmacology and Experimental Therapeutics | 2010

The Antiemetic 5-HT3 Receptor Antagonist Palonosetron Inhibits Substance P-Mediated Responses In Vitro and In Vivo

Camilo Rojas; Ying Li; Jie Zhang; Marigo Stathis; Jesse Alt; Ajit G. Thomas; Sergio Cantoreggi; Silvia Sebastiani; Claudio Pietra; Barbara S. Slusher

Palonosetron is the only 5-HT3 receptor antagonist approved for the treatment of delayed chemotherapy-induced nausea and vomiting (CINV) in moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), the endogenous ligand acting preferentially on neurokinin-1 (NK-1) receptors, not serotonin (5-HT), is the dominant mediator of delayed emesis. However, palonosetron does not bind to the NK-1 receptor. Recent data have revealed cross-talk between the NK-1 and 5HT3 receptor signaling pathways; we postulated that if palonosetron differentially inhibited NK-1/5-HT3 cross-talk, it could help explain its efficacy profile in delayed emesis. Consequently, we evaluated the effect of palonosetron, granisetron, and ondansetron on SP-induced responses in vitro and in vivo. NG108-15 cells were preincubated with palonosetron, granisetron, or ondansetron; antagonists were removed and the effect on serotonin enhancement of SP-induced calcium release was measured. In the absence of antagonist, serotonin enhanced SP-induced calcium-ion release. After preincubation with palonosetron, but not ondansetron or granisetron, the serotonin enhancement of the SP response was inhibited. Rats were treated with cisplatin and either palonosetron, granisetron, or ondansetron. At various times after dosing, single neuronal recordings from nodose ganglia were collected after stimulation with SP; nodose ganglia neuronal responses to SP were enhanced when the animals were pretreated with cisplatin. Palonosetron, but not ondansetron or granisetron, dose-dependently inhibited the cisplatin-induced SP enhancement. The results are consistent with previous data showing that palonosetron exhibits distinct pharmacology versus the older 5-HT3 receptor antagonists and provide a rationale for the efficacy observed with palonosetron in delayed CINV in the clinic.


Journal of Medicinal Chemistry | 2012

Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl Sulfide 3 (BPTES) Analogs as Glutaminase Inhibitors

Krupa H. Shukla; Dana Ferraris; Ajit G. Thomas; Marigo Stathis; Bridget Duvall; Greg Delahanty; Jesse Alt; Rana Rais; Camilo Rojas; Ping Gao; Yan Xiang; Chi V. Dang; Barbara S. Slusher; Takashi Tsukamoto

Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a potent and selective allosteric inhibitor of kidney-type glutaminase (GLS) that has served as a molecular probe to determine the therapeutic potential of GLS inhibition. In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated. Our structure-activity relationship (SAR) studies revealed that some truncated analogs retained the potency of BPTES, presenting an opportunity to improve its aqueous solubility. One of the analogs, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide 6, exhibited similar potency and better solubility relative to BPTES and attenuated the growth of P493 human lymphoma B cells in vitro as well as in a mouse xenograft model.

Collaboration


Dive into the Camilo Rojas's collaboration.

Top Co-Authors

Avatar

Barbara S. Slusher

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajit G. Thomas

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jesse Alt

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rana Rais

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Dana Ferraris

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Marigo Stathis

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ying Wu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Pavel Majer

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge