Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marigo Stathis is active.

Publication


Featured researches published by Marigo Stathis.


Anesthesia & Analgesia | 2008

Palonosetron Exhibits Unique Molecular Interactions with the 5-ht3 Receptor

Camilo Rojas; Marigo Stathis; Ajit G. Thomas; Edward B. Massuda; Jesse Alt; Jie Zhang; Ed Rubenstein; Silvia Sebastiani; Sergio Cantoreggi; Solomon H. Snyder; Barbara S. Slusher

BACKGROUND: Palonosetron is a 5-HT3-receptor antagonist (5-HT3-RA) that has been shown to be superior to other 5-HT3-RAs in phase III clinical trials for the prevention of acute, delayed, and overall chemotherapy-induced nausea and vomiting. The improved clinical efficacy of palonosetron may be due, in part, to its more potent binding and longer half-life. However, these attributes alone are not sufficient to explain the results with palonosetron. We sought to elucidate additional differences among 5-HT3-RAs that could help explain the observations in the clinic. METHODS: Receptor site saturation binding experiments were performed with [3H] palonosetron, [3H] granisetron, and [3H] ondansetron to obtain the corresponding Scatchard analyses and Hill coefficients. Diagnostic equilibrium binding experiments and kinetic dissociation experiments were conducted to examine competitive versus potential allosteric interactions between ondansetron, granisetron and palonosetron and the 5-HT3 receptor. Finally, the long-term effect of the three antagonists on receptor function as measured by Ca2+ influx in HEK 293 cells expressing the 5-HT3-receptor was compared. RESULTS: Analyses of binding isotherms using both Scatchard and Hill plots suggested positive cooperativity for palonosetron and simple bimolecular binding for both granisetron and ondansetron. Equilibrium diagnostic tests discriminated differential effects of palonosetron on [3H] ligand binding indicating that palonosetron was an allosteric antagonist whereas granisetron and ondansetron were competitive antagonists. Using dissociation rate strategies, palonosetron was shown to be an allosteric modifier that accelerated the rate of dissociation from the receptor of both granisetron and ondansetron. Differences in the binding mode of palonosetron to the 5-HT3 receptor were shown to have an impact on receptor function. In these experiments, cells were incubated with each antagonist, followed by infinite dilutions and dissociation for 2.5 h; cells previously incubated with either granisetron or ondansetron showed calcium-ion influx similar to control cells that had not been exposed to a 5-HT3 receptor antagonist. In contrast, substantial inhibition of calcium-ion influx was observed in cells that had been incubated with palonosetron. CONCLUSIONS: Palonosetron exhibited allosteric binding and positive cooperativity when binding to the 5-HT3 receptor. Palonosetron also triggered functional effects that persisted beyond its binding to the 5-HT3 receptor at the cell surface. Differences in binding and effects on receptor function may be relevant to the unique beneficial actions of palonosetron. To our knowledge, this is the first report showing palonosetrons interaction with the 5-HT3 receptor at the molecular level, clearly differentiating it from other 5-HT3-RAs.


European Journal of Pharmacology | 2010

Palonosetron triggers 5-HT3 receptor internalization and causes prolonged inhibition of receptor function

Camilo Rojas; Ajit G. Thomas; Jesse Alt; Marigo Stathis; Jie Zhang; Edward B. Rubenstein; Silvia Sebastiani; Sergio Cantoreggi; Barbara S. Slusher

Palonosetron is a 5-HT(3) receptor antagonist that has demonstrated superiority in preventing both acute and delayed emesis when compared to older first generation 5-HT(3) receptor antagonists. The objective of this work was to determine if palonosetron exhibits unique molecular interactions with the 5-HT(3) receptor that could provide a scientific rationale for observed clinical efficacy differences. Previously, we showed that palonosetron exhibits allosteric binding and positive cooperativity to the 5-HT(3) receptor in contrast to ondansetron and granisetron which exhibit simple bimolecular binding. The present work shows, through several independent experiments, that palonosetron uniquely triggers 5-HT(3) receptor internalization and induces prolonged inhibition of receptor function. After 24h incubation followed by dissociation conditions, [(3)H]palonosetron remained associated with whole cells but not to cell-free membranes (P<0.001). [(3)H]Palonosetrons binding to cells was resistant to both protease and acid treatments designed to denature cell surface proteins suggesting that the receptor complex was inside the cells rather than at the surface. Cells pretreated with unlabeled palonosetron subsequently exhibited reduced cell surface 5-HT(3) receptor binding. Palonosetron-triggered receptor internalization was visualized by confocal fluorescence microscopy using cells transfected with 5-HT(3) receptor fused to enhanced cyan fluorescent protein. In contrast, granisetron and ondansetron showed minimal to no effect on receptor internalization or prolonged inhibition of receptor function. These experiments may provide a pharmacological basis for differences noted in published clinical trials comparing palonosetron to other 5-HT(3) receptor antagonists.


Journal of Pharmacology and Experimental Therapeutics | 2010

The Antiemetic 5-HT3 Receptor Antagonist Palonosetron Inhibits Substance P-Mediated Responses In Vitro and In Vivo

Camilo Rojas; Ying Li; Jie Zhang; Marigo Stathis; Jesse Alt; Ajit G. Thomas; Sergio Cantoreggi; Silvia Sebastiani; Claudio Pietra; Barbara S. Slusher

Palonosetron is the only 5-HT3 receptor antagonist approved for the treatment of delayed chemotherapy-induced nausea and vomiting (CINV) in moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), the endogenous ligand acting preferentially on neurokinin-1 (NK-1) receptors, not serotonin (5-HT), is the dominant mediator of delayed emesis. However, palonosetron does not bind to the NK-1 receptor. Recent data have revealed cross-talk between the NK-1 and 5HT3 receptor signaling pathways; we postulated that if palonosetron differentially inhibited NK-1/5-HT3 cross-talk, it could help explain its efficacy profile in delayed emesis. Consequently, we evaluated the effect of palonosetron, granisetron, and ondansetron on SP-induced responses in vitro and in vivo. NG108-15 cells were preincubated with palonosetron, granisetron, or ondansetron; antagonists were removed and the effect on serotonin enhancement of SP-induced calcium release was measured. In the absence of antagonist, serotonin enhanced SP-induced calcium-ion release. After preincubation with palonosetron, but not ondansetron or granisetron, the serotonin enhancement of the SP response was inhibited. Rats were treated with cisplatin and either palonosetron, granisetron, or ondansetron. At various times after dosing, single neuronal recordings from nodose ganglia were collected after stimulation with SP; nodose ganglia neuronal responses to SP were enhanced when the animals were pretreated with cisplatin. Palonosetron, but not ondansetron or granisetron, dose-dependently inhibited the cisplatin-induced SP enhancement. The results are consistent with previous data showing that palonosetron exhibits distinct pharmacology versus the older 5-HT3 receptor antagonists and provide a rationale for the efficacy observed with palonosetron in delayed CINV in the clinic.


Journal of Medicinal Chemistry | 2012

Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl Sulfide 3 (BPTES) Analogs as Glutaminase Inhibitors

Krupa H. Shukla; Dana Ferraris; Ajit G. Thomas; Marigo Stathis; Bridget Duvall; Greg Delahanty; Jesse Alt; Rana Rais; Camilo Rojas; Ping Gao; Yan Xiang; Chi V. Dang; Barbara S. Slusher; Takashi Tsukamoto

Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a potent and selective allosteric inhibitor of kidney-type glutaminase (GLS) that has served as a molecular probe to determine the therapeutic potential of GLS inhibition. In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated. Our structure-activity relationship (SAR) studies revealed that some truncated analogs retained the potency of BPTES, presenting an opportunity to improve its aqueous solubility. One of the analogs, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide 6, exhibited similar potency and better solubility relative to BPTES and attenuated the growth of P493 human lymphoma B cells in vitro as well as in a mouse xenograft model.


Psychopharmacology | 1995

Rate of binding of various inhibitors at the dopamine transporter in vivo.

Marigo Stathis; Ursula Scheffel; S. Z. Lever; John W. Boja; Michael J. Kuhar; Frank Ivy Carroll

The rate of entry of drugs into brain is thought to be a factor in their abuse liability. In this investigation, we have examined the rate of entry and binding at dopamine transporters in mouse striatum for a variety of dopamine transporter inhibitors. The method utilized was based on measuring the displacement of3H-WIN 35,428 from striatal dopamine transporter sites in vivo at different times. Eleven cocaine analogs (RTI-31, RTI-32, RTI-51, RTI-55, RTI-113, RTI-114, RTI-117, RTI-120, RTI-121, WIN 35,065-2, and WIN 35,428) as well as other dopamine uptake site blockers (bupropion, nomifensine, and methylphenidate) were compared with (−) cocaine for their rates of displacement of3H-WIN 35,428 binding in vivo. The drugs that displayed the fastest occupancy rates were bupropion, (−) cocaine, nomifensine, and methylphenidate. RTI-51, RTI-121, RTI-114, RTI-117, RTI-120, RTI-32, RTI-55, and RTI-113, showed intermediate rates, whereas RTI-31, WIN 35,065-2, and WIN 35,428 exhibited the slowest rates of displacement. While many of the cocaine analogs have proven to be behaviorally and pharmacologically more potent than (−) cocaine, their rates of entry and binding site occupancy were slower than that for (−) cocaine. Earliest times of transporter occupancy by the different drugs were correlated (although weakly) with their degree of lipophilicity (r=0.59;P<0.02). Kinetic effects and metabolism of the compounds could complicate the interpretations of these data. There was no obvious correlation between rate of occupancy in this animal model and abuse liability in humans, which is consistent with the notion that other factors are critical as well.


European Journal of Pharmacology | 2012

Inhibition of substance P-mediated responses in NG108-15 cells by netupitant and palonosetron exhibit synergistic effects.

Marigo Stathis; Claudio Pietra; Camilo Rojas; Barbara S. Slusher

Netupitant is a potent and selective NK(1) receptor antagonist under development in combination with a fixed dose of palonosetron for the prevention of chemotherapy induced nausea and vomiting. Palonosetron is a 5-HT(3) receptor antagonist approved for both the prevention of acute and delayed chemotherapy induced nausea and vomiting after moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), a ligand acting largely on tachykinin (NK(1)) receptors, is the dominant mediator of delayed emesis. Interestingly, palonosetron does not bind to the NK(1) receptor so that the mechanism behind palonosetrons unique efficacy against delayed emesis is not clear. Palonosetron exhibits a distinct ability among 5-HT(3) receptor antagonists to inhibit crosstalk between NK(1) and 5-HT(3) receptor signaling pathways. The objective of the current work was to determine if palonosetrons ability to inhibit receptor signaling crosstalk would influence netupitants inhibition of the SP-mediated response when the two drugs are dosed together. We first studied the inhibition of SP-induced Ca(2+) mobilization in NG108-15 cells by palonosetron, ondansetron and granisetron. Unexpectedly, in the absence of serotonin, palonosetron inhibited the SP-mediated dose response 15-fold; ondansetron and granisetron had no effect. Netupitant also dose-dependently inhibited the SP response as expected from an NK1 receptor antagonist. Importantly, when both palonosetron and netupitant were present, they exhibited an enhanced inhibition of the SP response compared to either of the two antagonists alone. The results further confirm palonosetrons unique pharmacology among 5-HT(3) receptor antagonists and suggest that it can enhance the prevention of delayed emesis provided by NK(1) receptor antagonists.


Synapse | 1997

[125/123I]IPH: A radioiodinated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors

John L. Musachio; Victor L. Villemagne; Ursula Scheffel; Marigo Stathis; Paige Finley; Andrew G. Horti; Edythe D. London; Robert F. Dannals

Tomographic imaging of central nicotinic acetylcholine receptors (nAChRs) via single photon emission computed tomography (SPECT) has been hampered by the lack of a radioligand with suitable in vivo binding characteristics. Therefore, a novel analog of epibatidine, (±)‐exo‐2‐(2‐iodo‐5‐pyridyl)‐7‐azabicyclo[2.2.1]heptane (IPH), labeled with [125I] or [123I] was evaluated as an in vivo marker of central nicotinic acetylcholine receptors (nAChRs). [125I]IPH showed substantial brain penetration (4.2% of the injected dose at 30 min) and a cerebral biodistribution in mice consistent with the in vivo labeling of nAChRs (% injected dose/gram of thalamus, superior colliculi ≫ cerebellum). [125I]IPH binding sites were shown to be saturable with unlabeled IPH (ED50 approximately 1 μg/kg). The uptake of [125I]IPH was blocked significantly by the nicotinic agonists, cytisine, lobeline, and (−)‐nicotine, but not by the noncompetitive nAChR antagonist, mecamylamine. Antagonists of muscarinic (scopolamine), serotonin (ketanserin), and opioid (naloxone) receptors had no significant effect on [125I]IPH binding. A preliminary SPECT imaging study with [123I]IPH in a baboon showed [123I]IPH to localize in nAChR‐rich areas of brain (thalamus > frontal cortex > cerebellum). [123I]IPH binding in baboon brain was also displaced (35–45% displacement) by a challenge dose of cytisine showing that a well‐characterized nicotinic agonist effectively competes for [123I]IPH binding sites. [123I]IPH seems well suited for imaging studies of nAChRs and, to our knowledge, is the first SPECT agent that has allowed for the visualization of nAChRs in primate brain. Synapse 26:392–399, 1997.


Neuropharmacology | 1992

Repeated administration of MDMA causes transient down-regulation of serotonin 5-HT2 receptors

Ursula Scheffel; John R. Lever; Marigo Stathis; George A. Ricaurte

The present study examined short- and long-term effects of MDMA (3,4-methylene-dioxymethamphetamine) on serotonin (5-HT2 and 5-HT1c) receptors in the brain of the rat. N1-Methyl-2-[125I]lysergic acid diethylamide ([125I]MIL) was used to label these receptors in vitro and in vivo. The usefulness of [125I]MIL for in vivo detection of changes in 5-HT2 receptors was confirmed in preliminary experiments in which rats were treated chronically with mianserin (5 mg/kg, once daily for 10 days). Decreases in specific in vivo binding of [125I]MIL, after treatment with mianserin were found to be of the same magnitude as those determined by others, using in vitro methods. The MDMA (8 doses; 5-20 mg/kg each) was administered to rats over a period of 4 days. At various times after administration of the last dose of MDMA, the binding of [125I]MIL was measured. Acutely, treatment with MDMA (20 mg/kg) reduced specific in vivo binding of [125I]MIL in all regions of brain studied. For example, in the frontal cortex, specific binding of [125I]MIL was decreased by 80% at 6 hr and by 62% at 24 hr, after cessation of treatment with MDMA. Twenty-one days after administration of MDMA however, the number of binding sites for [125I]MIL was back to control levels. Reductions in in vivo binding of [125I]MIL in frontal cortex were dependent on the dose of MDMA injected and were associated with decreases in the number of binding sites for [125I]MIL (Bmax values) in tissue homogenates of the same area. Autoradiographic studies of MDMA-treated rats confirmed the decreased density of 5-HT2 receptors and also suggested that the 5-HT1c receptor of the choroid plexus was not affected. These results indicate that repeated administration of MDMA caused transient down-regulation of 5-HT2 receptors in the brain of the rat. Further, they demonstrated that [125I]MIL is a suitable radioligand for labeling 5-HT2 receptors, both in vitro and in vivo. Once labeled with an appropriate radionuclide for SPECT (single photon emission computed tomography) or PET (positron emission tomography), MIL should prove useful for monitoring changes in the density of serotonin receptors in the living mammalian brain.


Bioconjugate Chemistry | 2012

Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen.

Ying Chen; Mrudula Pullambhatla; R Sangeeta Banerjee.; Youngjoo Byun; Marigo Stathis; Camilo Rojas; Barbara S. Slusher; Ronnie C. Mease; Martin G. Pomper

Targeted near-infrared (NIR) optical imaging can be used in vivo to detect specific tissues, including malignant cells. A series of NIR fluorescent ligands targeting the prostate-specific membrane antigen (PSMA) was synthesized and each compound was tested for its ability to image PSMA+ tissues in experimental models of prostate cancer. The agents were prepared by conjugating commercially available active esters of NIR dyes, including IRDye800CW, IRDye800RS, Cy5.5, Cy7, or a derivative of indocyanine green (ICG) to the terminal amine group of (S)-2-(3-((S)-5-amino-1-carboxypentyl)ureido)pentanedioic acid 1, (14S,18S)-1-amino-8,16-dioxo-3,6-dioxa-9,15,17-triazaicosane-14,18,20-tricarboxylic acid 2 and (3S,7S)-26-amino-5,13,20-trioxo-4,6,12,21-tetraazahexacosane-1,3,7,22-tetracarboxylic acid 3. The K(i) values for the dye-inhibitor conjugates ranged from 1 to 700 pM. All compounds proved capable of imaging PSMA+ tumors selectively to varying degrees depending on the choice of fluorophore and linker. The highest tumor uptake was observed with IRDye800CW employing a poly(ethylene glycol) or lysine-suberate linker, as in 800CW-2 and 800CW-3, while the highest tumor to nontarget tissue ratios were obtained for Cy7 with these same linkers, as in Cy7-2 and Cy7-3. Compounds 2 and 3 provide useful scaffolds for targeting of PSMA+ tissues in vivo and should be useful for preparing NIR dye conjugates designed specifically for clinical intraoperative optical imaging devices.


Journal of NeuroVirology | 2014

Regional brain distribution of translocator protein using [11C]DPA-713 PET in individuals infected with HIV

Jennifer Coughlin; Yuchuan Wang; Shuangchao Ma; Chen Yue; Pearl K. Kim; Ashley V. Adams; Heidi Vornbrock Roosa; Kenneth L. Gage; Marigo Stathis; Rana Rais; Camilo Rojas; Jennifer L. McGlothan; Crystal C. Watkins; Ned Sacktor; Tomás R. Guilarte; Yun Zhou; Akira Sawa; Barbara S. Slusher; Brian Caffo; Michael Kassiou; Christopher J. Endres; Martin G. Pomper

Imaging the brain distribution of translocator protein (TSPO), a putative biomarker for glial cell activation and neuroinflammation, may inform management of individuals infected with HIV by uncovering regional abnormalities related to neurocognitive deficits and enable non-invasive therapeutic monitoring. Using the second-generation TSPO-targeted radiotracer, [11C]DPA-713, we conducted a positron emission tomography (PET) study to compare the brains of 12 healthy human subjects to those of 23 individuals with HIV who were effectively treated with combination antiretroviral therapy (cART). Compared to PET data from age-matched healthy control subjects, [11C]DPA-713 PET of individuals infected with HIV demonstrated significantly higher volume-of-distribution (VT) ratios in white matter, cingulate cortex, and supramarginal gyrus, relative to overall gray matter VT, suggesting localized glial cell activation in susceptible regions. Regional TSPO abnormalities were evident within a sub-cohort of neuro-asymptomatic HIV subjects, and an increase in the VT ratio within frontal cortex was specifically linked to individuals affected with HIV-associated dementia. These findings were enabled by employing a gray matter normalization approach for PET data quantification, which improved test–retest reproducibility, intra-class correlation within the healthy control cohort, and sensitivity of uncovering abnormal regional findings.

Collaboration


Dive into the Marigo Stathis's collaboration.

Top Co-Authors

Avatar

Barbara S. Slusher

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Camilo Rojas

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajit G. Thomas

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jesse Alt

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rana Rais

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge