Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Can Onur Avci is active.

Publication


Featured researches published by Can Onur Avci.


Nature Nanotechnology | 2013

Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures

Kevin Garello; Ioan Mihai Miron; Can Onur Avci; Frank Freimuth; Yuriy Mokrousov; Stefan Blügel; S. Auffret; Olivier Boulle; Gilles Gaudin; Pietro Gambardella

Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal/ferromagnetic heterostructures have drawn increasing attention to spin torques based on orbital-to-spin momentum transfer. The symmetry, magnitude and origin of spin-orbit torques (SOTs), however, remain a matter of debate. Here we report on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects. We provide a general scheme to measure the amplitude and direction of SOTs as a function of the magnetization direction. Based on space and time inversion symmetry arguments, we demonstrate that heavy metal/ferromagnetic layers allow for two different SOTs having odd and even behaviour with respect to magnetization reversal. Such torques include strongly anisotropic field-like and spin transfer-like components, which depend on the type of heavy metal layer and annealing treatment. These results call for SOT models that go beyond the spin Hall and Rashba effects investigated thus far.


Applied Physics Letters | 2014

Ultrafast magnetization switching by spin-orbit torques

Kevin Garello; Can Onur Avci; Ioan Mihai Miron; Manuel Baumgartner; Abhijit Ghosh; S. Auffret; Olivier Boulle; Gilles Gaudin; Pietro Gambardella

Spin-orbit torques induced by spin Hall and interfacial effects in heavy metal/ferromagnetic bilayers allow for a switching geometry based on in-plane current injection. Using this geometry, we demonstrate deterministic magnetization reversal by current pulses ranging from 180 ps to ms in Pt/Co/AlOx dots with lateral dimensions of 90 nm. We characterize the switching probability and critical current Ic as a function of pulse length, amplitude, and external field. Our data evidence two distinct regimes: a short-time intrinsic regime, where Ic scales linearly with the inverse of the pulse length, and a long-time thermally assisted regime, where Ic varies weakly. Both regimes are consistent with magnetization reversal proceeding by nucleation and fast propagation of domains. We find that Ic is a factor 3–4 smaller compared to a single domain model and that the incubation time is negligibly small, which is a hallmark feature of spin-orbit torques.


Applied Physics Letters | 2014

Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction

Murat Cubukcu; Olivier Boulle; Marc Drouard; Kevin Garello; Can Onur Avci; Ioan Mihai Miron; Juergen Langer; Berthold Ocker; Pietro Gambardella; Gilles Gaudin

We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 1011 A/m2 in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memory cell.


Nature Physics | 2015

Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers

Can Onur Avci; Kevin Garello; Abhijit Ghosh; Mihai Gabureac; Santos F. Alvarado; Pietro Gambardella

A unidirectional magnetoresistance observed in bilayer metal films could be used to add directional sensitivity to conventional magnetic sensors based on anisotropic magnetoresistance.


Physical Review B | 2014

Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers

Can Onur Avci; Kevin Garello; Corneliu Nistor; Sylvie Godey; Belen Ballesteros; Aitor Mugarza; Alessandro Barla; Manuel Valvidares; E. Pellegrin; Abhijit Ghosh; Ioan Mihai Miron; Olivier Boulle; S. Auffret; Gilles Gaudin; Pietro Gambardella

We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 \ifmmode^\circ\else\textdegree\fi{}C and characterized using x-ray-absorption spectroscopy, transmission electron microscopy, resistivity, and Hall effect measurements. By performing adiabatic harmonic Hall voltage measurements, we show that the transverse (fieldlike) and longitudinal (antidampinglike) spin-orbit torques are composed of constant and magnetization-dependent contributions, both of which vary strongly with annealing. Such variations correlate with changes of the saturation magnetization and magnetic anisotropy and are assigned to chemical and structural modifications of the layers. The relative variation of the constant and anisotropic torque terms as a function of annealing temperature is opposite for the fieldlike and antidamping torques. Measurements of the switching probability using sub-\ensuremath{\mu}s current pulses show that the critical current increases with the magnetic anisotropy of the layers, whereas the switching efficiency, measured as the ratio of magnetic anisotropy energy and pulse energy, decreases. The optimal annealing temperature to achieve maximum magnetic anisotropy, saturation magnetization, and switching efficiency is determined to be between 240 and 270 \ifmmode^\circ\else\textdegree\fi{}C.


Applied Physics Letters | 2012

Magnetization switching of an MgO/Co/Pt layer by in-plane current injection

Can Onur Avci; Kevin Garello; Ioan Mihai Miron; Gilles Gaudin; S. Auffret; Olivier Boulle; Pietro Gambardella

We demonstrate magnetization switching of a perpendicularly magnetized MgO/Co/Pt trilayer by application of an in-plane current and a constant in-plane magnetic field of small amplitude. Switching occurs due to an effective torque generated by spin-orbit coupling intrinsic to the trilayer structure. We investigate the dependence of the critical switching current on the current pulse width, showing that magnetization reversal in the dc limit is assisted by thermal fluctuations.


Physical Review B | 2014

Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers

Can Onur Avci; Kevin Garello; Mihai Gabureac; Abhijit Ghosh; Andreas Fuhrer; Santos F. Alvarado; Pietro Gambardella

We present harmonic transverse voltage measurements of current-induced thermoelectric and spin-orbit torque (SOT) effects in ferromagnet/normal-metal bilayers, in which thermal gradients produced by Joule heating and SOT coexist and give rise to ac transverse signals with comparable symmetry and magnitude. Based on the symmetry and field dependence of the transverse resistance, we develop a consistent method to separate thermoelectric and SOT measurements. By addressing first ferromagnet/light-metal bilayers with negligible spin-orbit coupling, we show that in-plane current injection induces a vertical thermal gradient whose sign and magnitude are determined by the resistivity difference and stacking order of the magnetic and nonmagnetic layers. We then study ferromagnet/heavy-metal bilayers with strong spin-orbit coupling, showing that second harmonic thermoelectric contributions to the transverse voltage may lead to a significant overestimation of the antidamping SOT. We find that thermoelectric effects are very strong in Ta(6 nm)/Co(2.5 nm) and negligible in Pt(6 nm)/Co(2.5 nm) bilayers. After including these effects in the analysis of the transverse voltage, we find that the antidamping SOTs in these bilayers, after normalization to the magnetization volume, are comparable to those found in thinner Co layers with perpendicular magnetization, whereas the fieldlike SOTs are about an order of magnitude smaller.


Nature Materials | 2017

Current-induced switching in a magnetic insulator

Can Onur Avci; Andy Quindeau; Chi-Feng Pai; Maxwell Mann; Lucas Caretta; Astera S. Tang; Mehmet C. Onbasli; Caroline A. Ross; Geoffrey S. D. Beach

The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.


Nature Nanotechnology | 2017

Spatially and time-resolved magnetization dynamics driven by spin–orbit torques

Manuel Baumgartner; Kevin Garello; Johannes Mendil; Can Onur Avci; Eva Grimaldi; Christoph Murer; Junxiao Feng; Mihai Gabureac; Christian Stamm; Yves Acremann; Simone Finizio; Sebastian Wintz; Jörg Raabe; Pietro Gambardella

Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.


Applied Physics Letters | 2015

Magnetoresistance of heavy and light metal/ferromagnet bilayers

Can Onur Avci; Kevin Garello; Johannes Mendil; Abhijit Ghosh; Nicolas Blasakis; Mihai Gabureac; Morgan Trassin; Manfred Fiebig; Pietro Gambardella

We studied the magnetoresistance of normal metal (NM)/ferromagnet (FM) bilayers in the linear and nonlinear (current-dependent) regimes and compared it with the amplitude of the spin-orbit torques and thermally induced electric fields. Our experiments reveal that the magnetoresistance of the heavy NM/Co bilayers (NM = Ta, W, Pt) is phenomenologically similar to the spin Hall magnetoresistance (SMR) of YIG/Pt, but has a much larger anisotropy, of the order of 0.5%, which increases with the atomic number of the NM. This SMR-like behavior is absent in light NM/Co bilayers (NM = Ti, Cu), which present the standard AMR expected of polycrystalline FM layers. In the Ta, W, Pt/Co bilayers we find an additional magnetoresistance, directly proportional to the current and to the transverse component of the magnetization. This so-called unidirectional SMR, of the order of 0.005%, is largest in W and correlates with the amplitude of the antidamping spin-orbit torque. The unidirectional SMR is below the accuracy of our measurements in YIG/Pt.

Collaboration


Dive into the Can Onur Avci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey S. D. Beach

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Quindeau

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maxwell Mann

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gilles Gaudin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Olivier Boulle

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge