Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candice Brinkmeyer-Langford is active.

Publication


Featured researches published by Candice Brinkmeyer-Langford.


Cytogenetic and Genome Research | 2008

A 4,103 marker integrated physical and comparative map of the horse genome

Terje Raudsepp; Ashley Gustafson-Seabury; Keith Durkin; Michelle L. Wagner; Glenda Goh; Christopher M. Seabury; Candice Brinkmeyer-Langford; Eun Joon Lee; Richa Agarwala; E. Stallknecht-Rice; Alejandro A. Schäffer; Loren C. Skow; Teruaki Tozaki; H. Yasue; M.C.T. Penedo; Leslie A. Lyons; Kamal Khazanehdari; M. M. Binns; James N. MacLeod; Ottmar Distl; Gérard Guérin; Tosso Leeb; James R. Mickelson; Bhanu P. Chowdhary

A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse × hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.


Ilar Journal | 2014

Pharmacologic Management of Duchenne Muscular Dystrophy: Target Identification and Preclinical Trials

Joe N. Kornegay; Christopher F. Spurney; Peter P. Nghiem; Candice Brinkmeyer-Langford; Eric P. Hoffman; Kanneboyina Nagaraju

Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.


Mammalian Genome | 2005

A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals

Candice Brinkmeyer-Langford; Terje Raudsepp; Eun Joon Lee; Glenda Goh; Alejandro A. Schäffer; Richa Agarwala; Michelle L. Wagner; Teruaki Tozaki; Loren C. Skow; James E. Womack; James R. Mickelson; Bhanu P. Chowdhary

A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse × hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19—a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution ofancestral HSA19 segments in eight mammalian orders involving about 50 species.


Animal Genetics | 2014

Genetic risk factors for insidious equine recurrent uveitis in Appaloosa horses

K. L. Fritz; Heather J. Kaese; Stephanie J. Valberg; Julie A. Hendrickson; Aaron Rendahl; Rebecca R. Bellone; K. M. Dynes; Michelle L. Wagner; M. Lucio; F. M. Cuomo; Candice Brinkmeyer-Langford; Loren C. Skow; James R. Mickelson; Mark S. Rutherford; Molly E. McCue

Appaloosa horses are predisposed to equine recurrent uveitis (ERU), an immune-mediated disease characterized by recurring inflammation of the uveal tract in the eye, which is the leading cause of blindness in horses. Nine genetic markers from the ECA1 region responsible for the spotted coat color of Appaloosa horses, and 13 microsatellites spanning the equine major histocompatibility complex (ELA) on ECA20, were evaluated for association with ERU in a group of 53 Appaloosa ERU cases and 43 healthy Appaloosa controls. Three markers were significantly associated (corrected P-value <0.05): a SNP within intron 11 of the TRPM1 gene on ECA1, an ELA class I microsatellite located near the boundary of the ELA class III and class II regions and an ELA class II microsatellite located in intron 1 of the DRA gene. Association between these three genetic markers and the ERU phenotype was confirmed in a second population of 24 insidious ERU Appaloosa cases and 16 Appaloosa controls. The relative odds of being an ERU case for each allele of these three markers were estimated by fitting a logistic mixed model with each of the associated markers independently and with all three markers simultaneously. The risk model using these markers classified ~80% of ERU cases and 75% of controls in the second population as moderate or high risk, and low risk respectively. Future studies to refine the associations at ECA1 and ELA loci and identify functional variants could uncover alleles conferring susceptibility to ERU in Appaloosa horses.


Genetics | 2014

Additive, epistatic, and environmental effects through the lens of expression variability QTL in a twin cohort.

Gang Wang; Ence Yang; Candice Brinkmeyer-Langford; James J. Cai

The expression of a gene can vary across individuals in the general population, as well as between monozygotic twins. This variable expression is assumed to be due to the influence of both genetic and nongenetic factors. Yet little evidence supporting this assumption has been obtained from empirical data. In this study, we used expression data from a large twin cohort to investigate the influences of genetic and nongenetic factors on variable gene expression. We focused on a set of expression variability QTL (evQTL)—i.e., genetic loci associated with the variance, as opposed to the mean, of gene expression. We identified evQTL for 99, 56, and 79 genes in lymphoblastoid cell lines, skin, and fat, respectively. The differences in gene expression, measured by the relative mean difference (RMD), tended to be larger between pairs of dizygotic (DZ) twins than between pairs of monozygotic (MZ) twins, showing that genetic background influenced the expression variability. Furthermore, a more profound RMD was observed between pairs of MZ twins whose genotypes were associated with greater expression variability than the RMD found between pairs of MZ twins whose genotypes were associated with smaller expression variability. This suggests that nongenetic (e.g., environmental) factors contribute to the variable expression. Lastly, we demonstrated that the formation of evQTL is likely due to partial linkages between eQTL SNPs that are additively associated with the mean of gene expression; in most cases, no epistatic effect is involved. Our findings have implications for understanding divergent sources of gene expression variability.


PLOS Genetics | 2015

Aberrant Gene Expression in Humans

Yong Zeng; Gang Wang; Ence Yang; Guoli Ji; Candice Brinkmeyer-Langford; James J. Cai

Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions.


Current Genomics | 2013

Comparative Genomics of X-linked Muscular Dystrophies: The Golden Retriever Model

Candice Brinkmeyer-Langford; Joe N. Kornegay

Duchenne muscular dystrophy (DMD) is a devastating disease that dramatically decreases the lifespan and abilities of affected young people. The primary molecular cause of the disease is the absence of functional dystrophin protein, which is critical to proper muscle function. Those with DMD vary in disease presentation and dystrophin mutation; the same causal mutation may be associated with drastically different levels of disease severity. Also contributing to this variation are the influences of additional modifying genes and/or changes in functional elements governing such modifiers. This genetic heterogeneity complicates the efficacy of treatment methods and to date medical interventions are limited to treating symptoms. Animal models of DMD have been instrumental in teasing out the intricacies of DMD disease and hold great promise for advancing knowledge of its variable presentation and treatment. This review addresses the utility of comparative genomics in elucidating the complex background behind phenotypic variation in a canine model of DMD, Golden Retriever muscular dystrophy (GRMD). This knowledge can be exploited in the development of improved, more personalized treatments for DMD patients, such as therapies that can be tailor-matched to the disease course and genomic background of individual patients.


BMC Genomics | 2009

A high resolution RH map of the bovine major histocompatibility complex.

Candice Brinkmeyer-Langford; Christopher P. Childers; K. L. Fritz; Ashley Gustafson-Seabury; Marian Cothran; Terje Raudsepp; James E. Womack; Loren C. Skow

BackgroundThe cattle MHC is termed the bovine leukocyte antigen (BoLA) and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0) that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000rad radiation hybrid panel. Seventy-seven unique sequence tagged site (STS) markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000rad bovine radiation hybrid (RH) panel to evaluate the different assemblies of the bovine genome sequence.ResultsAnalysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36) when reordered to account for the ancestral inversion in the ruminant MHC.ConclusionThese results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.


Animal Genetics | 2013

Microsatellite variation in the equine MHC.

Candice Brinkmeyer-Langford; James J. Cai; C. A. Gill; Loren C. Skow

Genes within the major histocompatibility complex (MHC) encode proteins involved in innate and adaptive immune responses. Genetic variation in this region can influence the immune response of an individual animal to challenges from a variety of pathogens; however, a complete documentation of genetic variation in the MHC is lacking for most domestic animals, including horses. To provide additional genetic markers for study of the horse MHC, or ELA (equine lymphocyte antigen), we identified 37 polymorphic microsatellite repeats in ELA and used these variations separately and together with published SNPs to investigate linkage disequilibrium (LD) and haplotype structure in a sample of Thoroughbred horses. ELA SNPs alone detected little LD, but microsatellites, either separately or combined with SNPs, revealed substantially more LD. A subset of markers in very high LD across the breadth of ELA may be predictive of structural polymorphisms or linked epistases that are important drivers of haplotype structure in Thoroughbreds.


Pediatric Research | 2016

Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy

Cristi L. Galindo; Jonathan H. Soslow; Candice Brinkmeyer-Langford; Manisha Gupte; Holly M. Smith; Seng Sengsayadeth; Douglas B. Sawyer; D. Woodrow Benson; Joe N. Kornegay; Larry W. Markham

Background:In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking.Methods:We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples.Results:We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function.Conclusion:These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

Collaboration


Dive into the Candice Brinkmeyer-Langford's collaboration.

Researchain Logo
Decentralizing Knowledge