Caofeng Pan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caofeng Pan.
Nano Letters | 2013
Zong-Hong Lin; Qingshen Jing; Peng Bai; Caofeng Pan; Ya Yang; Yusheng Zhou; Zhong Lin Wang
This article describes a simple, cost-effective, and scalable approach to fabricate a triboelectric nanogenerator (NG) with ultrahigh electric output. Triggered by commonly available ambient mechanical energy such as human footfalls, a NG with size smaller than a human palm can generate maximum short-circuit current of 2 mA, delivering instantaneous power output of 1.2 W to external load. The power output corresponds to an area power density of 313 W/m(2) and a volume power density of 54,268 W/m(3) at an open-circuit voltage of ~1200 V. An energy conversion efficiency of 14.9% has been achieved. The power was capable of instantaneously lighting up as many as 600 multicolor commercial LED bulbs. The record high power output for the NG is attributed to optimized structure, proper materials selection and nanoscale surface modification. This work demonstrated the practicability of using NG to harvest large-scale mechanical energy, such as footsteps, rolling wheels, wind power, and ocean waves.
Nano Letters | 2012
Caofeng Pan; Wenxi Guo; Chih-Yen Chen; Yusheng Zhou; Ruomeng Yu; Zhong Lin Wang
By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.
Nano Letters | 2013
Jun Chen; Ying Liu; Peng Bai; Yu Sheng Zhou; Qingshen Jing; Caofeng Pan; Zhong Lin Wang
The triboelectric effect is known for many centuries and it is the cause of many charging phenomena. However, it has not been utilized for energy harvesting until very recently. (1-5) Here we developed a new principle of triboelectric generator (TEG) based on a fully contacted, sliding electrification process, which lays a fundamentally new mechanism for designing universal, high-performance TEGs to harvest diverse forms of mechanical energy in our daily life. Relative displacement between two sliding surfaces of opposite triboelectric polarities generates uncompensated surface triboelectric charges; the corresponding polarization created a voltage drop that results in a flow of induced electrons between electrodes. Grating of linear rows on the sliding surfaces enables substantial enhancements of total charges, output current, and current frequency. The TEG was demonstrated to be an efficient power source for simultaneously driving a number of small electronics. The principle established in this work can be applied to TEGs of different configurations that accommodate the needs of harvesting energy and/or sensing from diverse mechanical motions, such as contacted sliding, lateral translation, and rotation/rolling.
Materials Today | 2012
Zhong Lin Wang; Ya Yang; Sihong Wang; Caofeng Pan
Besides targeting at the worldwide energy needs at a large scope, we have been developing an area of nanoenergy, aiming at using nanotechnology to harvest the energy required for sustainable, independent and maintenance free operation of micro/nano-systems and mobile/portable electronics. As first reported in 2006, various nanogenerators (NGs) have been demonstrated using piezoelectric, triboelectric and pyroelectric effects. By using the energy from our living environment, our goal is to make self-powered system. The self-powering approaches developed here are a new paradigm in nanotechnology and green energy for truly achieving sustainable self-sufficient micro/nano-systems, which are of critical importance for sensing, medical science, infrastructure/environmental monitoring, defense technology and personal electronics.
Advanced Science | 2015
Xiandi Wang; Lin Dong; Hanlu Zhang; Ruomeng Yu; Caofeng Pan; Zhong Lin Wang
The skin is the largest organ of the human body and can sense pressure, temperature, and other complex environmental stimuli or conditions. The mimicry of human skins sensory ability via electronics is a topic of innovative research that could find broad applications in robotics, artificial intelligence, and human–machine interfaces, all of which promote the development of electronic skin (e‐skin). To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs. These arrays can map pressure with high resolution and rapid response beyond that of human perception. Multi‐modal force sensing, temperature, and humidity detection, as well as self‐healing abilities are also exploited for multi‐functional e‐skins. Other recent progress in this field includes the integration with high‐density flexible circuits for signal processing, the combination with wireless technology for convenient sensing and energy/data transfer, and the development of self‐powered e‐skins. Future opportunities lie in the fabrication of highly intelligent e‐skins that can sense and respond to variations in the external environment. The rapidly increasing innovations in this area will be important to the scientific community and to the future of human life.
Nano Letters | 2013
Qing Yang; Ying Liu; Caofeng Pan; Jun Chen; Xiaonan Wen; Zhong Lin Wang
ZnO nanowire inorganic/organic hybrid ultraviolet (UV) light-emitting diodes (LEDs) have attracted considerable attention as they not only combine the high flexibility of polymers with the structural and chemical stability of inorganic nanostructures but also have a higher light extraction efficiency than thin film structures. However, up to date, the external quantum efficiency of UV LED based on ZnO nanostructures has been limited by a lack of efficient methods to achieve a balance between electron contributed current and hole contributed current that reduces the nonradiative recombination at interface. Here we demonstrate that the piezo-phototronic effect can largely enhance the efficiency of a hybridized inorganic/organic LED made of a ZnO nanowire/p-polymer structure, by trimming the electron current to match the hole current and increasing the localized hole density near the interface through a carrier channel created by piezoelectric polarization charges on the ZnO side. The external efficiency of the hybrid LED was enhanced by at least a factor of 2 after applying a proper strain, reaching 5.92%. This study offers a new concept for increasing organic LED efficiency and has a great potential for a wide variety of high-performance flexible optoelectronic devices.
Advanced Materials | 2015
Xiandi Wang; Hanlu Zhang; Ruomeng Yu; Lin Dong; Dengfeng Peng; Aihua Zhang; Yan Zhang; Hong Liu; Caofeng Pan; Zhong Lin Wang
A self-powered pressure-sensor matrix based on ZnS:Mn particles for more-secure signature collection is presented, by recording both handwritten signatures and the pressure applied by the signees. This large-area, flexible sensor matrix can map 2D pressure distributions in situ, either statically or dynamically, and the piezophotonic effect is proposed to initiate the mechanoluminescence process once a dynamic mechanical strain is applied.
Nano Letters | 2013
Caofeng Pan; Simiao Niu; Yong Ding; Lin Dong; Ruomeng Yu; Ying Liu; Zhong Lin Wang
Nanowire solar cells are promising candidates for powering nanosystems and flexible electronics. The strain in the nanowires, introduced during growth, device fabrication and/or application, is an important issue for piezoelectric semiconductor (like CdS, ZnO, and CdTe) based photovoltaic. In this work, we demonstrate the first largely enhanced performance of n-CdS/p-Cu(2)S coaxial nanowire photovoltaic (PV) devices using the piezo-phototronics effect when the PV device is subjected to an external strain. Piezo-phototronics effect could control the electron-hole pair generation, transport, separation, and/or recombination, thus enhanced the performance of the PV devices by as high as 70%. This effect offers a new concept for improving solar energy conversation efficiency by designing the orientation of the nanowires and the strain to be purposely introduced in the packaging of the solar cells. This study shed light on the enhanced flexible solar cells for applications in self-powered technology, environmental monitoring, and even defensive technology.
Advanced Materials | 2016
Xiandi Wang; Hanlu Zhang; Lin Dong; Xun Han; Weiming Du; Junyi Zhai; Caofeng Pan; Zhong Lin Wang
A triboelectric sensor matrix (TESM) can accurately track and map 2D tactile sensing. A self-powered, high-resolution, pressure-sensitive, flexible and durable TESM with 16 × 16 pixels is fabricated for the fast detection of single-point and multi-point touching. Using cross-locating technology, a cross-type TESM with 32 × 20 pixels is developed for more rapid tactile mapping, which significantly reduces the addressing lines from m × n to m + n.
Nano Letters | 2013
Yu Sheng Zhou; Ying Liu; Zong-Hong Lin; Caofeng Pan; Qingshen Jing; Zhong Lin Wang
By combining contact-mode atomic force microscopy (AFM) and scanning Kevin probe microscopy (SKPM), we demonstrated an in situ method for quantitative characterization of the triboelectrification process at the nanoscale. We systematically characterized the triboelectric charge distribution, multifriction effect on charge transfer, as well as subsequent charge diffusion on the dielectric surface: (i) the SiO2 surface can be either positively or negatively charged through triboelectric process using Si-based AFM probes with and without Pt coating, respectively; (ii) the triboelectric charges accumulated from multifriction and eventually reached to saturated concentrations of (-150 ± 8) μC/m(2) and (105 ± 6) μC/m(2), respectively; (iii) the charge diffusion coefficients on SiO2 surface were measured to be (1.10 ± 0.03) × 10(-15) m(2)/s for the positive charge and (0.19 ± 0.01) × 10(-15) m(2)/s for the negative charges. These quantifications will facilitate a fundamental understanding about the triboelectric and de-electrification process, which is important for designing high performance triboelectric nanogenerators. In addition, we demonstrated a technique for nanopatterning of surface charges without assistance of external electric field, which has a promising potential application for directed self-assembly of charged nanostructures for nanoelectronic devices.