Xun Han
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xun Han.
Advanced Materials | 2016
Xiandi Wang; Hanlu Zhang; Lin Dong; Xun Han; Weiming Du; Junyi Zhai; Caofeng Pan; Zhong Lin Wang
A triboelectric sensor matrix (TESM) can accurately track and map 2D tactile sensing. A self-powered, high-resolution, pressure-sensitive, flexible and durable TESM with 16 × 16 pixels is fabricated for the fast detection of single-point and multi-point touching. Using cross-locating technology, a cross-type TESM with 32 × 20 pixels is developed for more rapid tactile mapping, which significantly reduces the addressing lines from m × n to m + n.
Advanced Materials | 2015
Xun Han; Weiming Du; Ruomeng Yu; Caofeng Pan; Zhong Lin Wang
A large array of Schottky UV photodetectors (PDs) based on vertical aligned ZnO nanowires is achieved. By introducing the piezo-phototronic effect, the performance of the PD array is enhanced up to seven times in photoreponsivity, six times in sensitivity, and 2.8 times in detection limit. The UV PD array may have applications in optoelectronic systems, adaptive optical computing, and communication.
Advanced Materials | 2017
Xiandi Wang; Miaoling Que; Mengxiao Chen; Xun Han; Xiaoyi Li; Caofeng Pan; Zhong Lin Wang
A pressure-sensor matrix (PSM) with full dynamic range can accurately detect and spatially map pressure profiles. A 100 × 100 large-scale PSM gives both electrical and optical signals by itself without applying an external power source. The device represents a major step toward digital imaging, and the visible display of the pressure distribution covers a large dynamic range.
Physics Letters A | 2003
Chao-Yang Lu; M. W. Wu; Xun Han
Magnetoelectric properties of the spin-valve-type tunnel junction of Ta(5 nm)/Ni79Fe21(25 nm)/Ir22Mn78(12 nm)/Co75Fe25(4 nm)/Al(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta(5 nm) are investigated both experimentally and theoretically. It is shown that both magnon and phonon excitations contribute to the tunneling process. Moreover, we show that there are two branches of magnon with spin S = 1/2 and 3/2, respectively. The theoretical results are in good agreement with the experimental data
Advanced Materials | 2017
Xun Han; Weiming Du; Mengxiao Chen; Xiandi Wang; Xiaojia Zhang; Xiaoyi Li; Jing Li; Zhengchun Peng; Caofeng Pan; Zhong Lin Wang
Pressure sensors that can both directly visualize and record applied pressure/stress are essential for e-skin and medical/health monitoring. Here, using a WO3 -film electrochromic device (ECD) array (10 × 10 pixels) and a ZnO-nanowire-matrix pressure sensor (ZPS), a pressure visualization and recording (PVR) system with a spatial resolution of 500 µm is developed. The distribution of external pressures can be recorded through the piezotronic effect from the ZPS and directly expressed by color changes in the ECD. Applying a local pressure can generate piezoelectric polarization charges at the two ends of the ZnO nanowires, which leads to the tuning of the current to be transported through the system and thus the color of the WO3 film. The coloration and bleaching process in the ECD component show good cyclic stability, and over 85% of the color contrast is maintained after 300 cycles. In this PVR system, the applied pressure can be recorded without the assistance of a computer because of the color memory effect of the WO3 material. Such systems are promising for applications in human-electronic interfaces, military applications, and smart robots.
Journal of Materials Chemistry C | 2016
Xun Han; Mengxiao Chen; Caofeng Pan; Zhong Lin Wang
Wurtzite structured materials such as InN, CaN, ZnO, and CdSe simultaneously possess piezoelectric, semiconducting, and photoexcitation properties. The piezo-phototronic effect utilizes the piezo-polarization charges induced in the vicinity of the interface/junction to regulate the energy band diagrams and modulate charge carriers in the optoelectronic processes, such as transport, generation, recombination, and separation. This article reviews recent progress in piezo-phototronic effect enhanced photodetectors, starting from the fundamental physics, following the development from a single nanowire device to a large-scale photodetector array for illumination imaging. The piezo-phototronic effect provides a promising approach to improve the performance of the wurtzite structured material-based photodetectors. It may have potential applications in optical communication, optoelectronic devices, and multifunctional computing systems.
ACS Nano | 2017
Xiaoyi Li; Renrong Liang; Juan Tao; Zhengchun Peng; Qiming Xu; Xun Han; Xiandi Wang; Chunfeng Wang; Jing Zhu; Caofeng Pan; Zhong Lin Wang
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Nano Energy | 2015
Xin Yu; Xun Han; Zhenhuan Zhao; Jian Zhang; Weibo Guo; Caofeng Pan; Aixue Li; Hong Liu; Zhong Lin Wang
Advanced Energy Materials | 2014
Weiming Du; Xun Han; Long Lin; Mengxiao Chen; Xiaoyi Li; Caofeng Pan; Zhong Lin Wang
Advanced Functional Materials | 2014
Mengxiao Chen; Xiaoyi Li; Long Lin; Weiming Du; Xun Han; Jing Zhu; Caofeng Pan; Zhong Lin Wang