Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carel P. van Schaik is active.

Publication


Featured researches published by Carel P. van Schaik.


Current Anthropology | 2008

Fission-Fusion Dynamics: New Research Frameworks

Filippo Aureli; Colleen M. Schaffner; Christophe Boesch; Simon K. Bearder; Josep Call; Colin A. Chapman; Richard C. Connor; Anthony Di Fiore; R. I. M. Dunbar; S. Peter Henzi; Kay E. Holekamp; Amanda H. Korstjens; Robert Layton; Phyllis C. Lee; Julia Lehmann; Joseph H. Manson; Gabriel Ramos-Fernández; Karen B. Strier; Carel P. van Schaik

Renewed interest in fission‐fusion dynamics is due to the recognition that such dynamics may create unique challenges for social interaction and distinctive selective pressures acting on underlying communicative and cognitive abilities. New frameworks for integrating current knowledge on fission‐fusion dynamics emerge from a fundamental rethinking of the term “fission‐fusion” away from its current general use as a label for a particular modal type of social system (i.e., “fission‐fusion societies”). Specifically, because the degree of spatial and temporal cohesion of group members varies both within and across taxa, any social system can be described in terms of the extent to which it expresses fission‐fusion dynamics. This perspective has implications for socioecology, communication, cognitive demands, and human social evolution.


International Journal of Primatology | 2002

Evolution of Primate Social Systems

Peter M. Kappeler; Carel P. van Schaik

We review evolutionary processes and mechanisms that gave rise to the diversity of primate social systems. We define social organization, social structure and mating system as distinct components of a social system. For each component, we summarize levels and patterns of variation among primates and discuss evolutionary determinants of this variation. We conclude that conclusive explanations for a solitary life and pair-living are still lacking. We then focus on interactions among the 3 components in order to identify main targets of selection and potential constraints for social evolution. Social organization and mating system are more closely linked to each other than either one is to social structure. Further, we conclude that it is important to seek a priori measures for the effects of presumed selective factors and that the genetic contribution to social systems is still poorly examined. Finally, we examine the role of primate socio-ecology in current evolutionary biology and conclude that primates are not prominently represented because the main questions asked in behavioral ecology are often irrelevant for primate behavior. For the future, we see a rapprochement of these areas as the role of disease and life-history theory are integrated more fully into primate socio-ecology.


Archive | 2000

Infanticide by males and its implications

Carel P. van Schaik; Charles H. Janson

Male primates, carnivores and rodents sometimes kill infants that they did not sire. Infanticide by males is a relatively common phenomenon in these groups, but tends to be rare in any given species. Is this behavior pathological or accidental, or does it reflect a conditional reproductive strategy for males in certain circumstances? In this book, case studies and reviews confirm the adaptive nature of infanticide in males in primates and other animals, and help to predict which species should be vulnerable to it. Much of the book is devoted to exploring the evolutionary consequences of the threat of infanticide by males for social and reproductive behavior and physiology. Written for graduate students and researchers in animal behavior, behavioral ecology, biological anthropology and social psychology, this book shows that social systems are shaped not only be ecological pressures but also by social pressures such as infanticide risk.


Brain Behavior and Evolution | 2007

Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates

Robert O. Deaner; Karin Isler; Judith M. Burkart; Carel P. van Schaik

For over a century, various neuroanatomical measures have been employed as assays of cognitive ability in comparative studies. Nevertheless, it is still unclear whether these measures actually correspond to cognitive ability. A recent meta-analysis of cognitive performance of a broad set of primate species has made it possible to provide a quantitative estimate of general cognitive ability across primates. We find that this estimate is not strongly correlated with neuroanatomical measures that statistically control for a possible effect of body size, such as encephalization quotient or brain size residuals. Instead, absolute brain size measures were the best predictors of primate cognitive ability. Moreover, there was no indication that neocortex-based measures were superior to measures based on the whole brain. The results of previous comparative studies on the evolution of intelligence must be reviewed with this conclusion in mind.


Animal Behaviour | 2002

Conflict resolution following aggression in gregarious animals: a predictive framework

Filippo Aureli; Marina Cords; Carel P. van Schaik

Knowledge of how animals manage their conflicts is critical for understanding the dynamics of social systems. During the last two decades research on gregarious animals, especially primates, has focused on the mechanisms of conflict management, mainly on friendly postconflict reunions (also called ‘reconciliation’) in which former opponents exchange affiliative behaviour soon after an aggressive conflict. Our aim in this paper is to present a framework in which the costs and benefits of friendly postconflict reunions, both for each individual opponent and for their mutual relationship, are used to predict the patterning of postconflict resolution mechanisms in other gregarious animals. The framework predicts the occurrence of postconflict reunions in species that live in stable social units, have individualized relationships, and experience postconflict hostility, but especially in those in which intragroup aggression disrupts valuable relationships. The critical issue is whether aggressive conflicts occur between cooperative partners and whether the level of aggression is sufficient to jeopardize the benefits associated with such valuable relationships. We conclude by proposing four research priorities to evaluate the role of friendly reunions in negotiating relationships and the way they are themselves influenced by asymmetries in partner value and biological market effects.


Philosophical Transactions of the Royal Society B | 2007

The evolution of animal ‘cultures’ and social intelligence

Andrew Whiten; Carel P. van Schaik

Decades-long field research has flowered into integrative studies that, together with experimental evidence for the requisite social learning capacities, have indicated a reliance on multiple traditions (‘cultures’) in a small number of species. It is increasingly evident that there is great variation in manifestations of social learning, tradition and culture among species, offering much scope for evolutionary analysis. Social learning has been identified in a range of vertebrate and invertebrate species, yet sustained traditions appear rarer, and the multiple traditions we call cultures are rarer still. Here, we examine relationships between this variation and both social intelligence—sophisticated information processing adapted to the social domain—and encephalization. First, we consider whether culture offers one particular confirmation of the social (‘Machiavellian’) intelligence hypothesis that certain kinds of social life (here, culture) select for intelligence: ‘you need to be smart to sustain culture’. Phylogenetic comparisons, particularly focusing on our own study animals, the great apes, support this, but we also highlight some paradoxes in a broader taxonomic survey. Second, we use intraspecific variation to address the converse hypothesis that ‘culture makes you smart’, concluding that recent evidence for both chimpanzees and orang-utans support this proposition.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Other-regarding preferences in a non-human primate: common marmosets provision food altruistically.

Judith M. Burkart; Ernst Fehr; Charles Efferson; Carel P. van Schaik

Human cooperation is unparalleled in the animal world and rests on an altruistic concern for the welfare of genetically unrelated strangers. The evolutionary roots of human altruism, however, remain poorly understood. Recent evidence suggests a discontinuity between humans and other primates because individual chimpanzees do not spontaneously provide food to other group members, indicating a lack of concern for their welfare. Here, we demonstrate that common marmoset monkeys (Callithrix jacchus) do spontaneously provide food to nonreciprocating and genetically unrelated individuals, indicating that other-regarding preferences are not unique to humans and that their evolution did not require advanced cognitive abilities such as theory of mind. Because humans and marmosets are cooperative breeders and the only two primate taxa in which such unsolicited prosociality has been found, we conclude that these prosocial predispositions may emanate from cooperative breeding.


Nature | 2011

Energetics and the evolution of human brain size

Ana F. Navarrete; Carel P. van Schaik; Karin Isler

The human brain stands out among mammals by being unusually large. The expensive-tissue hypothesis explains its evolution by proposing a trade-off between the size of the brain and that of the digestive tract, which is smaller than expected for a primate of our body size. Although this hypothesis is widely accepted, empirical support so far has been equivocal. Here we test it in a sample of 100 mammalian species, including 23 primates, by analysing brain size and organ mass data. We found that, controlling for fat-free body mass, brain size is not negatively correlated with the mass of the digestive tract or any other expensive organ, thus refuting the expensive-tissue hypothesis. Nonetheless, consistent with the existence of energy trade-offs with brain size, we find that the size of brains and adipose depots are negatively correlated in mammals, indicating that encephalization and fat storage are compensatory strategies to buffer against starvation. However, these two strategies can be combined if fat storage does not unduly hamper locomotor efficiency. We propose that human encephalization was made possible by a combination of stabilization of energy inputs and a redirection of energy from locomotion, growth and reproduction.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The Evolution of Self-Control

Evan L. MacLean; Brian Hare; Charles L. Nunn; Elsa Addessi; Federica Amici; Rindy C. Anderson; Filippo Aureli; Joseph M. Baker; Amanda E. Bania; Allison M. Barnard; Neeltje J. Boogert; Elizabeth M. Brannon; Emily E. Bray; Joel Bray; Lauren J. N. Brent; Judith M. Burkart; Josep Call; Jessica F. Cantlon; Lucy G. Cheke; Nicola S. Clayton; Mikel M. Delgado; Louis DiVincenti; Kazuo Fujita; Esther Herrmann; Chihiro Hiramatsu; Lucia F. Jacobs; Kerry E. Jordan; Jennifer R. Laude; Kristin L. Leimgruber; Emily J. E. Messer

Significance Although scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problem-solving tasks measuring self-control and evaluated the leading hypotheses regarding how and why cognition evolves. Across species, differences in absolute (not relative) brain volume best predicted performance on these tasks. Within primates, dietary breadth also predicted cognitive performance, whereas social group size did not. These results suggest that increases in absolute brain size provided the biological foundation for evolutionary increases in self-control, and implicate species differences in feeding ecology as a potential selective pressure favoring these skills. Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.


Behavioral Ecology and Sociobiology | 1991

Competitive regimes and female bonding in two species of squirrel monkeys (Saimiri oerstedi and S. sciureus)

Carol L. Mitchell; Sue Boinski; Carel P. van Schaik

SummaryEcological and behavioral data from long-term field studies of known individuals in two closely related squirrel monkey species (Saimiri oerstedi and S. sciureus) were used to examine hypotheses about the source of variation in female bonding among group-living primates. Social relationships in species which live in cohesive groups are thought to depend on the nature of competition for resources. S. oerstedi and S. sciureus both live in large groups and are subject to intense predation. Direct feeding competition both between and within groups is extremely low in S. oerstedi; in this species female relationships are undifferentiated, no female dominance hierarchy is evident and females disperse from their natal group. S. sciureus also experiences very low levels of between-group competition, but within-group direct competition for resources is frequent; this species demonstrates differentiated female relationships, a female dominance hierarchy, and female philopatry. The correlated ecological and social variables found in these two congeners further minimize the minor effects of phylogenetic differences and emphasize the importance of food distribution in determining social characteristics.

Collaboration


Dive into the Carel P. van Schaik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge A. Wich

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gauri R. Pradhan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge