Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith M. Burkart is active.

Publication


Featured researches published by Judith M. Burkart.


Brain Behavior and Evolution | 2007

Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates

Robert O. Deaner; Karin Isler; Judith M. Burkart; Carel P. van Schaik

For over a century, various neuroanatomical measures have been employed as assays of cognitive ability in comparative studies. Nevertheless, it is still unclear whether these measures actually correspond to cognitive ability. A recent meta-analysis of cognitive performance of a broad set of primate species has made it possible to provide a quantitative estimate of general cognitive ability across primates. We find that this estimate is not strongly correlated with neuroanatomical measures that statistically control for a possible effect of body size, such as encephalization quotient or brain size residuals. Instead, absolute brain size measures were the best predictors of primate cognitive ability. Moreover, there was no indication that neocortex-based measures were superior to measures based on the whole brain. The results of previous comparative studies on the evolution of intelligence must be reviewed with this conclusion in mind.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Other-regarding preferences in a non-human primate: common marmosets provision food altruistically.

Judith M. Burkart; Ernst Fehr; Charles Efferson; Carel P. van Schaik

Human cooperation is unparalleled in the animal world and rests on an altruistic concern for the welfare of genetically unrelated strangers. The evolutionary roots of human altruism, however, remain poorly understood. Recent evidence suggests a discontinuity between humans and other primates because individual chimpanzees do not spontaneously provide food to other group members, indicating a lack of concern for their welfare. Here, we demonstrate that common marmoset monkeys (Callithrix jacchus) do spontaneously provide food to nonreciprocating and genetically unrelated individuals, indicating that other-regarding preferences are not unique to humans and that their evolution did not require advanced cognitive abilities such as theory of mind. Because humans and marmosets are cooperative breeders and the only two primate taxa in which such unsolicited prosociality has been found, we conclude that these prosocial predispositions may emanate from cooperative breeding.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The Evolution of Self-Control

Evan L. MacLean; Brian Hare; Charles L. Nunn; Elsa Addessi; Federica Amici; Rindy C. Anderson; Filippo Aureli; Joseph M. Baker; Amanda E. Bania; Allison M. Barnard; Neeltje J. Boogert; Elizabeth M. Brannon; Emily E. Bray; Joel Bray; Lauren J. N. Brent; Judith M. Burkart; Josep Call; Jessica F. Cantlon; Lucy G. Cheke; Nicola S. Clayton; Mikel M. Delgado; Louis DiVincenti; Kazuo Fujita; Esther Herrmann; Chihiro Hiramatsu; Lucia F. Jacobs; Kerry E. Jordan; Jennifer R. Laude; Kristin L. Leimgruber; Emily J. E. Messer

Significance Although scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problem-solving tasks measuring self-control and evaluated the leading hypotheses regarding how and why cognition evolves. Across species, differences in absolute (not relative) brain volume best predicted performance on these tasks. Within primates, dietary breadth also predicted cognitive performance, whereas social group size did not. These results suggest that increases in absolute brain size provided the biological foundation for evolutionary increases in self-control, and implicate species differences in feeding ecology as a potential selective pressure favoring these skills. Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.


Animal Cognition | 2010

Cognitive consequences of cooperative breeding in primates

Judith M. Burkart; Carel P. van Schaik

Several hypotheses propose that cooperative breeding leads to increased cognitive performance, in both nonhuman and human primates, but systematic evidence for such a relationship is missing. A causal link might exist because motivational and cognitive processes necessary for the execution and coordination of helping behaviors could also favor cognitive performance in contexts not directly related to caregiving. In callitrichids, which among primates rely most strongly on cooperative breeding, these motivational and cognitive processes include attentional biases toward monitoring others, the ability to coordinate actions spatially and temporally, increased social tolerance, increased responsiveness to others’ signals, and spontaneous prosociality. These processes are likely to enhance performance particularly in socio-cognitive contexts. Therefore, cooperatively breeding primates are expected to outperform their independently breeding sister taxa in socio-cognitive tasks. We evaluate this prediction by reviewing the literature and comparing cognitive performance in callitrichids with that of their sister taxa, i.e. squirrel monkeys, which are independent breeders, and capuchin monkeys, which show an intermediate breeding system. Consistent with our prediction, this review reveals that callitrichids systematically and significantly outperform their sister taxa in the socio-cognitive, but not in the non-social domain. This comparison is complemented with more qualitative evaluations of prosociality and cognitive performance in non-primate cooperative breeders, which suggest that among mammals, cooperative breeding generally produces conditions conducive to socio-cognitive performance. In the hominid lineage, however, the adoption of extensive allomaternal care presumably resulted in more pervasive cognitive consequences, because the motivational consequences of cooperative breeding was added to an ape-level cognitive system already capable of understanding simple mental states, which enabled the emergence of shared intentionality.


Philosophical Transactions of the Royal Society B | 2011

Social learning and evolution: the cultural intelligence hypothesis

Carel P. van Schaik; Judith M. Burkart

If social learning is more efficient than independent individual exploration, animals should learn vital cultural skills exclusively, and routine skills faster, through social learning, provided they actually use social learning preferentially. Animals with opportunities for social learning indeed do so. Moreover, more frequent opportunities for social learning should boost an individuals repertoire of learned skills. This prediction is confirmed by comparisons among wild great ape populations and by social deprivation and enculturation experiments. These findings shaped the cultural intelligence hypothesis, which complements the traditional benefit hypotheses for the evolution of intelligence by specifying the conditions in which these benefits can be reaped. The evolutionary version of the hypothesis argues that species with frequent opportunities for social learning should more readily respond to selection for a greater number of learned skills. Because improved social learning also improves asocial learning, the hypothesis predicts a positive interspecific correlation between social-learning performance and individual learning ability. Variation among primates supports this prediction. The hypothesis also predicts that more heavily cultural species should be more intelligent. Preliminary tests involving birds and mammals support this prediction too. The cultural intelligence hypothesis can also account for the unusual cognitive abilities of humans, as well as our unique mechanisms of skill transfer.


Philosophical Transactions of the Royal Society B | 2010

On the psychology of cooperation in humans and other primates: combining the natural history and experimental evidence of prosociality

Adrian V. Jaeggi; Judith M. Burkart; Carel P. van Schaik

In any given species, cooperation involves prosocial acts that usually return a fitness benefit to the actor. These acts are produced by a set of psychological rules, which will be similar in related species if they have a similar natural history of cooperation. Prosocial acts can be (i) reactive, i.e. in response to specific stimuli, or (ii) proactive, i.e. occur in the absence of such stimuli. We propose that reactive prosocial acts reflect sensitivity to (i) signals or signs of need and (ii) the presence and size of an audience, as modified by (iii) social distance to the partner or partners. We examine the evidence for these elements in humans and other animals, especially non-human primates, based on the natural history of cooperation, quantified in the context of food sharing, and various experimental paradigms. The comparison suggests that humans share with their closest living relatives reactive responses to signals of need, but differ in sensitivity to signs of need and cues of being watched, as well as in the presence of proactive prosociality. We discuss ultimate explanations for these derived features, in particular the adoption of cooperative breeding as well as concern for reputation and costly signalling during human evolution.


Nature Communications | 2014

The evolutionary origin of human hyper-cooperation

Judith M. Burkart; O. Allon; Federica Amici; Claudia Fichtel; Christa Finkenwirth; Adolf Heschl; J. Huber; Karin Isler; Zaida K. Kosonen; Eloisa Martins; Ellen J. M. Meulman; R. Richiger; K. Rueth; Brigitte Spillmann; S. Wiesendanger; C. P. van Schaik

Proactive, that is, unsolicited, prosociality is a key component of our hyper-cooperation, which in turn has enabled the emergence of various uniquely human traits, including complex cognition, morality and cumulative culture and technology. However, the evolutionary foundation of the human prosocial sentiment remains poorly understood, largely because primate data from numerous, often incommensurable testing paradigms do not provide an adequate basis for formal tests of the various functional hypotheses. We therefore present the results of standardized prosociality experiments in 24 groups of 15 primate species, including humans. Extensive allomaternal care is by far the best predictor of interspecific variation in proactive prosociality. Proactive prosocial motivations therefore systematically arise whenever selection favours the evolution of cooperative breeding. Because the human data fit this general primate pattern, the adoption of cooperative breeding by our hominin ancestors also provides the most parsimonious explanation for the origin of human hyper-cooperation.


Trends in Cognitive Sciences | 2012

Explaining brain size variation: from social to cultural brain

Carel P. van Schaik; Karin Isler; Judith M. Burkart

Although the social brain hypothesis has found near-universal acceptance as the best explanation for the evolution of extensive variation in brain size among mammals, it faces two problems. First, it cannot account for grade shifts, where species or complete lineages have a very different brain size than expected based on their social organization. Second, it cannot account for the observation that species with high socio-cognitive abilities also excel in general cognition. These problems may be related. For birds and mammals, we propose to integrate the social brain hypothesis into a broader framework we call cultural intelligence, which stresses the importance of the high costs of brain tissue, general behavioral flexibility and the role of social learning in acquiring cognitive skills.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Primate energy expenditure and life history

Herman Pontzer; David A. Raichlen; Adam D. Gordon; Kara Schroepfer-Walker; Brian Hare; Kathleen M. Muldoon; Holly M. Dunsworth; Brian M. Wood; Karin Isler; Judith M. Burkart; Mitchell T. Irwin; Robert W. Shumaker; Elizabeth V. Lonsdorf; Stephen R. Ross

Significance Measurements of daily energy expenditure indicate that primates, including humans, expend only half of the calories expected for mammals of similar body size. As energy expenditure is central to organismal biology, these results hold important implications for life history, evolutionary biology, and foraging ecology for primates and other mammals. Specifically, we show that primates’ remarkably low metabolic rates account for their distinctively slow rates of growth, reproduction, and aging. Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates’ slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates’ slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that primates use remarkably little energy each day, expending on average only 50% of the energy expected for a placental mammal of similar mass. Such large differences in TEE are not easily explained by differences in physical activity, and instead appear to reflect systemic metabolic adaptation for low energy expenditures in primates. Indeed, comparisons of wild and captive primate populations indicate similar levels of energy expenditure. Broad interspecific comparisons of growth, reproduction, and maximum life span indicate that primates’ slow metabolic rates contribute to their characteristically slow life histories.


PLOS ONE | 2012

Impartial third-party interventions in captive chimpanzees: a reflection of community concern.

Claudia Rudolf von Rohr; Sonja E. Koski; Judith M. Burkart; Clare Caws; Orlaith N. Fraser; Angela Ziltener; Carel P. van Schaik

Because conflicts among social group members are inevitable, their management is crucial for group stability. The rarest and most interesting form of conflict management is policing, i.e., impartial interventions by bystanders, which is of considerable interest due to its potentially moral nature. Here, we provide descriptive and quantitative data on policing in captive chimpanzees. First, we report on a high rate of policing in one captive group characterized by recently introduced females and a rank reversal between two males. We explored the influence of various factors on the occurrence of policing. The results show that only the alpha and beta males acted as arbitrators using manifold tactics to control conflicts, and that their interventions strongly depended on conflict complexity. Secondly, we compared the policing patterns in three other captive chimpanzee groups. We found that although rare, policing was more prevalent at times of increased social instability, both high-ranking males and females performed policing, and conflicts of all sex-dyad combinations were policed. These results suggest that the primary function of policing is to increase group stability. It may thus reflect prosocial behaviour based upon “community concern.” However, policing remains a rare behaviour and more data are needed to test the generality of this hypothesis.

Collaboration


Dive into the Judith M. Burkart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Liebal

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Adolf Heschl

Konrad Lorenz Institute for Evolution and Cognition Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge