Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caridad Galindo-Romero is active.

Publication


Featured researches published by Caridad Galindo-Romero.


Investigative Ophthalmology & Visual Science | 2013

Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia.

Caridad Galindo-Romero; F Javier Valiente-Soriano; Manuel Jiménez-López; Diego García-Ayuso; María Paz Villegas-Pérez; Manuel Vidal-Sanz; Marta Agudo-Barriuso

PURPOSE To assess the effect of a single intravitreal injection of brain-derived neurotrophic factor (BDNF) on the survival of mouse retinal ganglion cells (RGCs) and on phagocytic microglia after intraorbital optic nerve transection (IONT). METHODS One week before IONT or processing, RGCs from pigmented C57/BL6 and albino Swiss mice were traced by applying hydroxystilbamidine methanesulfonate (OHSt) to both superior colliculi. Right afterward unilateral IONT, BDNF or vehicle were intravitreally administered. At increasing time intervals postlesion retinas were dissected as flat-mounts and subjected to BRN3A and Iba1 immunodetection. BRN3A(+)RGCs were automatically quantified in all retinas and their distribution was assessed using isodensity maps. In all retinas, the Iba1-positive and OHSt-filled microglial cells present in the ganglion cell layer were manually quantified. Their distribution was observed by neighbor maps. RESULTS When vehicle was administered, IONT-induced RGC death was significant at 3 days, while BDNF treatment delayed it to 5 days. At 14 days after BDNF or vehicle injection, 45% and 18% of RGCs had survived, respectively. There was a significant increase in OHSt-filled microglial cells in the right (contralateral) retinas after both treatments, without concurring with quantifiable RGC death. In the injured eye, the number of OHSt-filled microglial cells increased as the population of RGCs decreased and spread from central to peripheral areas. CONCLUSIONS In axotomized mouse retinas, a single intravitreal injection of BDNF protects RGCs throughout the whole retina. There is a strong contralateral response that involves microglial activation and OHSt phagocytosis.


Frontiers in Neuroanatomy | 2014

Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina.

Francisco J. Valiente-Soriano; Diego García-Ayuso; Arturo Ortín-Martínez; Manuel Jiménez-López; Caridad Galindo-Romero; María Paz Villegas-Pérez; Marta Agudo-Barriuso; Anthony Vugler; Manuel Vidal-Sanz

Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a+RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina.


Vision Research | 2010

ERG changes in albino and pigmented mice after optic nerve transection

Luis Alarcón-Martínez; Marcelino Avilés-Trigueros; Caridad Galindo-Romero; Javier Valiente-Soriano; Marta Agudo-Barriuso; Pedro de la Villa; María Paz Villegas-Pérez; Manuel Vidal-Sanz

Optic nerve transection (ONT) triggers retinal ganglion cell (RGC) death. By using this paradigm, we have analyzed for the first time in adult albino and pigmented mice, the effects of ONT in the scotopic threshold response (STR) components (negative and positive) of the full-field electroretinogram. Two weeks after ONT, when in pigmented mice approximately 18% of the RGC population survive, the STR-implicit time decreased and the p and nSTR waves diminished approximately to 40% or 55%, in albino or pigmented, respectively, with respect to the values recorded from the non-operated contralateral eyes. These changes were maintained up to 12 weeks post-ONT, demonstrating that the ERG-STR is a useful parameter to monitor RGC functionality in adult mice.


Investigative Ophthalmology & Visual Science | 2013

Changes in the photoreceptor mosaic of P23H-1 rats during retinal degeneration: implications for rod-cone dependent survival.

Diego García-Ayuso; Arturo Ortín-Martínez; Manuel Jiménez-López; Caridad Galindo-Romero; Nicolás Cuenca; Isabel Pinilla; Manuel Vidal-Sanz; Marta Agudo-Barriuso; María Paz Villegas-Pérez

PURPOSE To investigate the spatiotemporal relationship between rod and cone degeneration in the P23H-1 rat. METHODS Control Sprague-Dawley (SD) and P23H-1 rats of ages ranging from P30 to P365 were used. Retinas were processed for whole mounts or cross sections and rods and cones were immunodetected. We used newly developed image analysis techniques to quantify the total population of L/M cones (the most abundant cones in the rat) and analyzed the rings of rod-cone degeneration. RESULTS In P23H-1 rats, rod degeneration occurs rapidly: first the rod outer segment shortens, at P30 there is extensive rod loss, and by P180 rod loss is almost complete except for the most peripheral retina. The numbers of L/M cones are, at all postnatal ages, lower in P23H-1 rats than in control SD rats, and decrease significantly with age (by P180). Rod and cone degeneration is spatiotemporally related and occurs in rings that appear already at P90 and spread throughout the entire retina. At P180, the rings of rod-cone degeneration are more abundant in the equatorial retina and are larger in the dorsal retina. CONCLUSIONS This work describes for the first time that in the P23H-1 rat, rod and cone degeneration is spatiotemporally related and occurs in rings. Cone loss follows rod loss and starts very soon, even before P30, the first age analyzed here. The characteristics of the rings suggest that secondary cone degeneration is influenced by retinal position and/or other intrinsic or extrinsic factors.


Investigative Ophthalmology & Visual Science | 2015

Transient Downregulation of Melanopsin Expression After Retrograde Tracing or Optic Nerve Injury in Adult Rats.

Francisco M. Nadal-Nicolás; Maria H. Madeira; Manuel Salinas-Navarro; Manuel Jiménez-López; Caridad Galindo-Romero; Arturo Ortín-Martínez; Ana Raquel Santiago; Manuel Vidal-Sanz; Marta Agudo-Barriuso

PURPOSE To investigate the effect of retrograde tracing or axotomy on melanopsin mRNA expression and immunodetection in albino and pigmented rat retinas. METHODS Groups were (1) intact-naïve retinas; (2) optic nerve crush (ONC) analyzed at 7 days (7d) or 2 months (2m); (3) Fluorogold (FG) tracing from the superior colliculi (SCi) analyzed at 7d or 2m; (4) tracing from the intact optic nerve (ON) with FG or hydroxystilbamidine methanesulfonate (OHSt), analyzed 3d later; and (5) sham tracing from the ON or sham surgery. Brn3a and melanopsin were double stained in whole mounts to quantify and assess the distribution of orthotopic and displaced Brn3a(+) retinal ganglion cells (Brn3a(+)RGCs) and melanopsin(+)RGCs (m(+)RGCs). Freshly dissected retinas were used for melanopsin mRNA quantitative PCR. RESULTS Tracing from the SCi did not affect the number of Brn3a(+)RGCs or m(+)RGCs counted in pigmented rats. However, only 55% of m(+)RGCs were immunodetected in albinos at 7d, although by 2m the m(+)RGCs counts returned to normal. Optic nerve tracing had a more dramatic effect (38% or 77% of m(+)RGCs were immunodetected in albino or pigmented rats) that occurred irrespectively of the tracer (OHSt or FG). This effect was not observed in the sham groups. After ONC, Brn3a(+)RGCs decreased to 37% and 8% by 7d and 2m, respectively. Melanopsin (+)RGC counts diminished to 30% at 7d, but recovered to 49% of controls by 2m. Melanopsin mRNA was downregulated after ON tracing or 7d after ONC, but did not differ from intact values 2m after ONC. CONCLUSIONS Following ON injury or retrograde tracing there is a transient melanopsin downregulation that should be taken into account when assessing m(+)RGC survival.


Frontiers in Neuroscience | 2017

Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension

Manuel Vidal-Sanz; Caridad Galindo-Romero; Francisco J. Valiente-Soriano; Francisco M. Nadal-Nicolás; Arturo Ortín-Martínez; Giuseppe Rovere; Manuel Salinas-Navarro; Fernando Lucas-Ruiz; M.C. Sánchez-Migallón; Paloma Sobrado-Calvo; Marcelino Avilés-Trigueros; María Paz Villegas-Pérez; Marta Agudo-Barriuso

Glaucoma, one of the leading causes of blindness worldwide, affects primarily retinal ganglion cells (RGCs) and their axons. The pathophysiology of glaucoma is not fully understood, but it is currently believed that damage to RGC axons at the optic nerve head plays a major role. Rodent models to study glaucoma include those that mimic either ocular hypertension or optic nerve injury. Here we review the anatomical loss of the general population of RGCs (that express Brn3a; Brn3a+RGCs) and of the intrinsically photosensitive RGCs (that express melanopsin; m+RGCs) after chronic (LP-OHT) or acute (A-OHT) ocular hypertension and after complete intraorbital optic nerve transection (ONT) or crush (ONC). Our studies show that all of these insults trigger RGC death. Compared to Brn3a+RGCs, m+RGCs are more resilient to ONT, ONC, and A-OHT but not to LP-OHT. There are differences in the course of RGC loss both between these RGC types and among injuries. An important difference between the damage caused by ocular hypertension or optic nerve injury appears in the outer retina. Both axotomy and LP-OHT induce selective loss of RGCs but LP-OHT also induces a protracted loss of cone photoreceptors. This review outlines our current understanding of the anatomical changes occurring in rodent models of glaucoma and discusses the advantages of each one and their translational value.


Scientific Reports | 2016

Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury

Francisco M. Nadal-Nicolás; Caridad Galindo-Romero; Francisco J. Valiente-Soriano; Maria Barberà-Cremades; Carlos deTorre-Minguela; Manuel Salinas-Navarro; Pablo Pelegrín; Marta Agudo-Barriuso

Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy.


Investigative Ophthalmology & Visual Science | 2015

Alpha2-Adrenergic-Agonist Brimonidine Stimulates Negative Feedback and Attenuates Injury-Induced Phospho-ERK and Dedifferentiation of Chicken Müller Cells.

Mohammadd Harun-Or-Rashid; Marta Diaz-DelCastillo; Caridad Galindo-Romero; Finn Hallböök

PURPOSE Retinal injury induces Müller cell dedifferentiation by activating extracellular signal-regulated kinase (ERK) signaling. Stimulation of α2-adrenergic receptors protects against injury but also activates ERK in Müller cells. The purpose of this work was to study the effect of α2-adrenergic signaling on injury-induced ERK and Müller cell dedifferentiation. We tested the hypothesis that α2-stimulation triggers negative feedback regulation of the injury-induced ERK pathway that attenuates Müller cell dedifferentiation. METHODS Chicken retina injured by N-methyl-D-aspartate and cultured primary Müller cells were stimulated by the α2-adrenergic agonist brimonidine. Immunostaining, quantitative RT-PCR, and Western blot techniques in combination with receptor blockers were used for analysis of the cellular responses. RESULTS Alpha2-adrenergic receptor stimulation attenuated injury-induced ERK activation and dedifferentiation of Müller cells as seen by decreased phospho-ERK, expression of transitin, and retinal progenitor cell genes. The attenuation was concomitant with a synergistic upregulation of several negative ERK-signal feedback regulators including ERK-phosphatases, Raf1-, and growth factor receptor-binding proteins. The results were also seen in cultures of primary Müller cells. CONCLUSIONS Alpha2-adrenergic signaling on Müller cells elicits an intracellular attenuation of the injury response that comprises negative ERK-signaling feedback leading to attenuated Müller cell dedifferentiation. The implications of this study are that adrenergic stress signals may directly modulate glial function in retina and that α2-adrenergic receptor pharmacology may be used to control glial injury response.


PLOS ONE | 2016

Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina.

Caridad Galindo-Romero; Mohammad Harun-Or-Rashid; Manuel Jiménez-López; Manuel Agudo-Barriuso; Finn Hallböök

We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina.


PLOS ONE | 2016

Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors

Mohammad Harun-Or-Rashid; Dardan Konjusha; Caridad Galindo-Romero; Finn Hallböök

Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins among several other functions, serve as an injury-signal that regulate the gliotic response of Müller cells.

Collaboration


Dive into the Caridad Galindo-Romero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge