Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carina Klein is active.

Publication


Featured researches published by Carina Klein.


Sleep | 2012

The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity.

Valérie Bachmann; Carina Klein; Sereina Bodenmann; Nikolaus Schäfer; Wolfgang Berger; Peter Brugger; Hans-Peter Landolt

STUDY OBJECTIVES EEG slow waves are the hallmark of deep NREM sleep and may reflect the restorative functions of sleep. Evidence suggests that increased sleep slow waves after sleep deprivation reflect plastic synaptic processes, and that brain-derived neurotrophic factor (BDNF) is causally involved in their homeostatic regulation. The functional Val66Met polymorphism of the gene encoding pro-BDNF causes impaired activity-dependent secretion of mature BDNF protein. We investigated whether this polymorphism contributes to the pronounced inter-individual variation in sleep slow wave activity (SWA) in humans. SETTING Sleep laboratory in temporal isolation unit. PARTICIPANTS Eleven heterozygous Met allele carriers and 11 individually sex- and age-matched Val/Val homozygotes. INTERVENTIONS Forty hours prolonged wakefulness. MEASUREMENTS AND RESULTS Cognitive performance, subjective state, and waking and sleep EEG in baseline and after sleep deprivation were studied. Val/Val homozygotes showed better response accuracy than Met allele carriers on a verbal 2-back working memory task. This difference did not reflect genotype-dependent differences in sleepiness, well-being, or sustained attention. In baseline and recovery nights, deep stage 4 sleep and NREM sleep intensity as quantified by EEG SWA (0.75-4.5 Hz) were higher in Val/Val compared to Val/Met genotype. Similar to sleep deprivation, the difference was most pronounced in the first NREM sleep episode. By contrast, increased activity in higher EEG frequencies (> 6 Hz) in wakefulness and REM sleep was distinct from the effects of prolonged wakefulness. CONCLUSION BDNF contributes to the regulation of sleep slow wave oscillations, suggesting that genetically determined variation in neuronal plasticity modulates NREM sleep intensity in humans.


Human Brain Mapping | 2016

The “silent” imprint of musical training

Carina Klein; Franziskus Liem; Jürgen Hänggi; Stefan Elmer; Lutz Jäncke

Playing a musical instrument at a professional level is a complex multimodal task requiring information integration between different brain regions supporting auditory, somatosensory, motor, and cognitive functions. These kinds of task‐specific activations are known to have a profound influence on both the functional and structural architecture of the human brain. However, until now, it is widely unknown whether this specific imprint of musical practice can still be detected during rest when no musical instrument is used. Therefore, we applied high‐density electroencephalography and evaluated whole‐brain functional connectivity as well as small‐world topologies (i.e., node degree) during resting state in a sample of 15 professional musicians and 15 nonmusicians. As expected, musicians demonstrate increased intra‐ and interhemispheric functional connectivity between those brain regions that are typically involved in music perception and production, such as the auditory, the sensorimotor, and prefrontal cortex as well as Brocas area. In addition, mean connectivity within this specific network was positively related to musical skill and the total number of training hours. Thus, we conclude that musical training distinctively shapes intrinsic functional network characteristics in such a manner that its signature can still be detected during a task‐free condition. Hum Brain Mapp 37:536–546, 2016.


Journal of Cognitive Neuroscience | 2014

Music and language expertise influence the categorization of speech and musical sounds: Behavioral and electrophysiological measurements

Stefan Elmer; Carina Klein; Jürg Kühnis; Franziskus Liem; Martin Meyer; Lutz Jäncke

In this study, we used high-density EEG to evaluate whether speech and music expertise has an influence on the categorization of expertise-related and unrelated sounds. With this purpose in mind, we compared the categorization of speech, music, and neutral sounds between professional musicians, simultaneous interpreters (SIs), and controls in response to morphed speech–noise, music–noise, and speech–music continua. Our hypothesis was that music and language expertise will strengthen the memory representations of prototypical sounds, which act as a perceptual magnet for morphed variants. This means that the prototype would “attract” variants. This so-called magnet effect should be manifested by an increased assignment of morphed items to the trained category, by a reduced maximal slope of the psychometric function, as well as by differential event-related brain responses reflecting memory comparison processes (i.e., N400 and P600 responses). As a main result, we provide first evidence for a domain-specific behavioral bias of musicians and SIs toward the trained categories, namely music and speech. In addition, SIs showed a bias toward musical items, indicating that interpreting training has a generic influence on the cognitive representation of spectrotemporal signals with similar acoustic properties to speech sounds. Notably, EEG measurements revealed clear distinct N400 and P600 responses to both prototypical and ambiguous items between the three groups at anterior, central, and posterior scalp sites. These differential N400 and P600 responses represent synchronous activity occurring across widely distributed brain networks, and indicate a dynamical recruitment of memory processes that vary as a function of training and expertise.


Scientific Reports | 2017

Takotsubo Syndrome – Predictable from brain imaging data

Carina Klein; Thierry Hiestand; Jelena-Rima Ghadri; Christian Templin; Lutz Jäncke; Jürgen Hänggi

Takotsubo syndrome (TTS) is characterized by acute left ventricular dysfunction, with a hospital-mortality rate similar to acute coronary syndrome (ACS). However, the aetiology of TTS is still unknown. In the present study, a multivariate pattern analysis using machine learning with multimodal magnetic resonance imaging (MRI) data of the human brain of TTS patients and age- and gender-matched healthy control subjects was performed. We found consistent structural and functional alterations in TTS patients compared to the control group. In particular, anatomical and neurophysiological measures from brain regions constituting the emotional-autonomic control system contributed to a prediction accuracy of more than 82%. Thus, our findings demonstrate homogeneous neuronal alterations in TTS patients and substantiate the importance of the concept of a brain-heart interaction in TTS.


Brain Topography | 2016

The Influence of Pre-stimulus EEG Activity on Reaction Time During a Verbal Sternberg Task is Related to Musical Expertise

Carina Klein; Laura Diaz Hernandez; Thomas Koenig; Mara Kottlow; Stefan Elmer; Lutz Jäncke

Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.


PLOS ONE | 2018

The interpreter's brain during rest — Hyperconnectivity in the frontal lobe

Carina Klein; Silvana Iris Metz; Stefan Elmer; Lutz Jäncke

Language in its highest complexity is a unique human faculty with simultaneous translation being among the most demanding language task involving both linguistic and executive functions. In this context, bilingually grown up individuals as well as simultaneous interpreters (SIs) represent appropriate groups for studying expertise-related neural adaptations in the human brain. The present study was performed to examine if a domain-specific neural network activation pattern, constituted by brain regions involved in speech processing as well as cognitive control mechanisms can be detected during a task-free resting state condition. To investigate this, electroencephalographic (EEG) data were recorded from 16 SIs and 16 age and gender-matched multilingual control subjects. Graph-theoretical network analyses revealed interhemispheric hyperconnectivity between the ventral part of the prefrontal cortex (pars opercularis and pars triangularis) and the dorsolateral prefrontal cortex (DLPFC) in language experts compared to multilingual controls in the alpha frequency range. This finding suggests that the high cognitive demands placed on simultaneous interpreting lead to an increased neural communication between prefrontal brain regions essentially engaged in supporting executive control—a neural fingerprint that is even detectable during rest.


NeuroImage | 2015

MRI with and without a high-density EEG cap—what makes the difference?

Carina Klein; Jürgen Hänggi; Roger Luechinger; Lutz Jäncke


BMC Neuroscience | 2017

Expertise-related functional brain network efficiency in healthy older adults

Julia Binder; Ladina Bezzola; Aurea I. S. Haueter; Carina Klein; Jürg Kühnis; Hansruedi Baetschmann; Lutz Jäncke


Journal of the American College of Cardiology | 2018

Takotsubo Syndrome Associated With Structural Brain Alterations of the Limbic System

Thierry Hiestand; Jürgen Hänggi; Carina Klein; Marlene Sofie Topka; Milosz Jaguszewski; Jelena R. Ghadri; Thomas F. Lüscher; Lutz Jäncke; Christian Templin

Collaboration


Dive into the Carina Klein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge