Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Templin is active.

Publication


Featured researches published by Christian Templin.


The New England Journal of Medicine | 2015

Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy

Christian Templin; Jelena R. Ghadri; Johanna Diekmann; L. Christian Napp; Dana Roxana Bataiosu; Milosz Jaguszewski; Victoria L. Cammann; Annahita Sarcon; Verena Geyer; Catharina A. Neumann; Burkhardt Seifert; Jens Hellermann; Moritz Schwyzer; Katharina Eisenhardt; Josef Jenewein; Jennifer Franke; Hugo A. Katus; Christof Burgdorf; Heribert Schunkert; Christian Moeller; Holger Thiele; Johann Bauersachs; Carsten Tschöpe; H.P. Schultheiss; Charles A. Laney; Lawrence Rajan; Guido Michels; Roman Pfister; Christian Ukena; Michael Böhm

BACKGROUND The natural history, management, and outcome of takotsubo (stress) cardiomyopathy are incompletely understood. METHODS The International Takotsubo Registry, a consortium of 26 centers in Europe and the United States, was established to investigate clinical features, prognostic predictors, and outcome of takotsubo cardiomyopathy. Patients were compared with age- and sex-matched patients who had an acute coronary syndrome. RESULTS Of 1750 patients with takotsubo cardiomyopathy, 89.8% were women (mean age, 66.8 years). Emotional triggers were not as common as physical triggers (27.7% vs. 36.0%), and 28.5% of patients had no evident trigger. Among patients with takotsubo cardiomyopathy, as compared with an acute coronary syndrome, rates of neurologic or psychiatric disorders were higher (55.8% vs. 25.7%) and the mean left ventricular ejection fraction was markedly lower (40.7±11.2% vs. 51.5±12.3%) (P<0.001 for both comparisons). Rates of severe in-hospital complications including shock and death were similar in the two groups (P=0.93). Physical triggers, acute neurologic or psychiatric diseases, high troponin levels, and a low ejection fraction on admission were independent predictors for in-hospital complications. During long-term follow-up, the rate of major adverse cardiac and cerebrovascular events was 9.9% per patient-year, and the rate of death was 5.6% per patient-year. CONCLUSIONS Patients with takotsubo cardiomyopathy had a higher prevalence of neurologic or psychiatric disorders than did those with an acute coronary syndrome. This condition represents an acute heart failure syndrome with substantial morbidity and mortality. (Funded by the Mach-Gaensslen Foundation and others; ClinicalTrials.gov number, NCT01947621.).


Circulation | 2004

Statin-Induced Improvement of Endothelial Progenitor Cell Mobilization, Myocardial Neovascularization, Left Ventricular Function, and Survival After Experimental Myocardial Infarction Requires Endothelial Nitric Oxide Synthase

Ulf Landmesser; Niels Engberding; Ferdinand Hermann Bahlmann; Arnd Schaefer; Antje Wiencke; André Heineke; Stephan Spiekermann; Denise Hilfiker-Kleiner; Christian Templin; Daniel Kotlarz; Maja Mueller; Martin Fuchs; Burkhard Hornig; Hermann Haller; Helmut Drexler

Background—Endothelial nitric oxide (eNO) bioavailability is severely reduced after myocardial infarction (MI) and in heart failure. Statins enhance eNO availability by both increasing eNO production and reducing NO inactivation. We therefore studied the effect of statin treatment on eNO availability after MI and tested its role for endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular (LV) dysfunction, remodeling, and survival after MI. Methods and Results—Wild-type (WT) and eNO synthase (eNOS)−/− mice with extensive anterior MI were randomized to treatment with vehicle (V) or atorvastatin (Ator, 50 mg/kg QD by gavage) for 4 weeks starting on day 1 after MI. Ator markedly improved endothelium-dependent, NO-mediated vasorelaxation; mobilization of endothelial progenitor cells; and myocardial neovascularization of the infarct border in WT mice after MI while having no effect in eNOS−/− mice. LV dysfunction and interstitial fibrosis were markedly attenuated by Ator in WT mice, whereas no effect was observed in eNOS−/− mice after MI. Importantly, Ator significantly increased the survival rate during 4 weeks after MI in WT mice (Ator versus V, 80% versus 46%; P<0.01, n=75) but not in eNOS−/− mice (43% versus 48%; NS, n=42). Conclusions—These findings suggest that increased eNO availability is required for statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, LV dysfunction, interstitial fibrosis, and survival after MI. eNO bioavailability after MI likely represents an important therapeutic target in heart failure after MI and mediates beneficial effects of statin treatment after MI.


Journal of Clinical Investigation | 2011

Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease

Christian Besler; Kathrin Heinrich; Lucia Rohrer; Carola Doerries; Meliana Riwanto; Diana M. Shih; Angeliki Chroni; Keiko Yonekawa; Sokrates Stein; Nicola Schaefer; Maja Mueller; Alexander Akhmedov; Georgios Daniil; Costantina Manes; Christian Templin; Christophe A. Wyss; Willibald Maier; Felix C. Tanner; Christian M. Matter; Roberto Corti; Clement E. Furlong; Aldons J. Lusis; Arnold von Eckardstein; Alan M. Fogelman; Thomas F. Lüscher; Ulf Landmesser

Therapies that raise levels of HDL, which is thought to exert atheroprotective effects via effects on endothelium, are being examined for the treatment or prevention of coronary artery disease (CAD). However, the endothelial effects of HDL are highly heterogeneous, and the impact of HDL of patients with CAD on the activation of endothelial eNOS and eNOS-dependent pathways is unknown. Here we have demonstrated that, in contrast to HDL from healthy subjects, HDL from patients with stable CAD or an acute coronary syndrome (HDLCAD) does not have endothelial antiinflammatory effects and does not stimulate endothelial repair because it fails to induce endothelial NO production. Mechanistically, this was because HDLCAD activated endothelial lectin-like oxidized LDL receptor 1 (LOX-1), triggering endothelial PKCβII activation, which in turn inhibited eNOS-activating pathways and eNOS-dependent NO production. We then identified reduced HDL-associated paraoxonase 1 (PON1) activity as one molecular mechanism leading to the generation of HDL with endothelial PKCβII-activating properties, at least in part due to increased formation of malondialdehyde in HDL. Taken together, our data indicate that in patients with CAD, HDL gains endothelial LOX-1- and thereby PKCβII-activating properties due to reduced HDL-associated PON1 activity, and that this leads to inhibition of eNOS-activation and the subsequent loss of the endothelial antiinflammatory and endothelial repair-stimulating effects of HDL.


European Heart Journal | 2013

Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Simplicity® catheter system and the EnligHTN™ multi-electrode renal denervation catheter

Christian Templin; Milosz Jaguszewski; Jelena R. Ghadri; Isabella Sudano; Roman Gaehwiler; Jens P. Hellermann; Renate Schoenenberger-Berzins; Ulf Landmesser; Paul Erne; Georg Noll; Thomas F. Lüscher

Aims Catheter-based renal nerve ablation (RNA) using radiofrequency energy is a novel treatment for drug-resistant essential hypertension. However, the local endothelial and vascular injury induced by RNA has not been characterized, although this importantly determines the long-term safety of the procedure. Optical coherence tomography (OCT) enables in vivo visualization of morphologic features with a high resolution of 10–15 µm. The objective of this study was to assess the morphological features of the endothelial and vascular injury induced by RNA using OCT. Methods and results In a prospective observational study, 32 renal arteries of patients with treatment-resistant hypertension underwent OCT before and after RNA. All pre- and post-procedural OCT pullbacks were evaluated regarding vascular changes such as vasospasm, oedema (notches), dissection, and thrombus formation. Thirty-two renal arteries were evaluated, in which automatic pullbacks were obtained before and after RNA. Vasospasm was observed more often after RNA then before the procedure (0 vs. 42%, P < 0.001). A significant decrease in mean renal artery diameter after RNA was documented both with the EnligHTN™ (4.69 ± 0.73 vs. 4.21 ± 0.87 mm; P < 0.001) and with the Simplicity® catheter (5.04 ± 0.66 vs. 4.57 ± 0.88 mm; P < 0.001). Endothelial-intimal oedema was noted in 96% of cases after RNA. The presence of thrombus formations was significantly higher after the RNA then before ablation (67 vs. 18%, P < 0.001). There was one evidence of arterial dissection after RNA with the Simplicity® catheter, while endothelial and intimal disruptions were noted in two patients with the EnligHTN™ catheter. Conclusion Here we show that diffuse renal artery constriction and local tissue damage at the ablation site with oedema and thrombus formation occur after RNA and that OCT visualizes vascular lesions not apparent on angiography. This suggests that dual antiplatelet therapy may be required during RNA.


European Heart Journal | 2014

A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction

Milosz Jaguszewski; Julia Osipova; Jelena-Rima Ghadri; Lars Christian Napp; Christian Widera; Jennifer Franke; Marcin Fijałkowski; Radosław Nowak; Marta Fijalkowska; Ingo Volkmann; Hugo A. Katus; Kai C. Wollert; Johann Bauersachs; Paul Erne; Thomas F. Lüscher; Thomas Thum; Christian Templin

Aims Takotsubo cardiomyopathy (TTC) remains a potentially life-threatening disease, which is clinically indistinguishable from acute myocardial infarction (MI). Today, no established biomarkers are available for the early diagnosis of TTC and differentiation from MI. MicroRNAs (miRNAs/miRs) emerge as promising sensitive and specific biomarkers for cardiovascular disease. Thus, we sought to identify circulating miRNAs suitable for diagnosis of acute TTC and for distinguishing TTC from acute MI. Methods and results After miRNA profiling, eight miRNAs were selected for verification by real-time quantitative reverse transcription polymerase chain reaction in patients with TTC (n = 36), ST-segment elevation acute myocardial infarction (STEMI, n = 27), and healthy controls (n = 28). We quantitatively confirmed up-regulation of miR-16 and miR-26a in patients with TTC compared with healthy subjects (both, P < 0.001), and up-regulation of miR-16, miR-26a, and let-7f compared with STEMI patients (P < 0.0001, P < 0.05, and P < 0.05, respectively). Consistent with previous publications, cardiac specific miR-1 and miR-133a were up-regulated in STEMI patients compared with healthy controls (both, P < 0.0001). Moreover, miR-133a was substantially increased in patients with STEMI compared with TTC (P < 0.05). A unique signature comprising miR-1, miR-16, miR-26a, and miR-133a differentiated TTC from healthy subjects [area under the curve (AUC) 0.835, 95% CI 0.733–0.937, P < 0.0001] and from STEMI patients (AUC 0.881, 95% CI 0.793–0.968, P < 0.0001). This signature yielded a sensitivity of 74.19% and a specificity of 78.57% for TTC vs. healthy subjects, and a sensitivity of 96.77% and a specificity of 70.37% for TTC vs. STEMI patients. Additionally, we noticed a decrease of the endothelin-1 (ET-1)-regulating miRNA-125a-5p in parallel with a robust increase of ET-1 plasma levels in TTC compared with healthy subjects (P < 0.05). Conclusion The present study for the first time describes a signature of four circulating miRNAs as a robust biomarker to distinguish TTC from STEMI patients. The significant up-regulation of these stress- and depression-related miRNAs suggests a close connection of TTC with neuropsychiatric disorders. Moreover, decreased levels of miRNA125a-5p as well as increased plasma levels of its target ET-1 are in line with the microvascular spasm hypothesis of the TTC pathomechanism.


European Heart Journal | 2010

Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy

Christian Templin; Martin Meyer; Maja Müller; Valentin Djonov; Ruslan Hlushchuk; Ivanka Dimova; Stefanie Flueckiger; Peter W. Kronen; Michèle Sidler; Karina Klein; Flora Nicholls; Jelena-Rima Ghadri; Klaus Weber; Dragica Paunovic; Roberto Corti; Simon P. Hoerstrup; Thomas F. Lüscher; Ulf Landmesser

Aims Coronary late stent thrombosis, a rare but devastating complication, remains an important concern in particular with the increasing use of drug-eluting stents. Notably, pathological studies have indicated that the proportion of uncovered coronary stent struts represents the best morphometric predictor of late stent thrombosis. Intracoronary optical frequency domain imaging (OFDI), a novel second-generation optical coherence tomography (OCT)-derived imaging method, may allow rapid imaging for the detection of coronary stent strut coverage with a markedly higher precision when compared with intravascular ultrasound, due to a microscopic resolution (axial ∼10–20 µm), and at a substantially increased speed of image acquisition when compared with first-generation time-domain OCT. However, a histological validation of coronary OFDI for the evaluation of stent strut coverage in vivo is urgently needed. Hence, the present study was designed to evaluate the capacity of coronary OFDI by electron (SEM) and light microscopy (LM) analysis to detect and evaluate stent strut coverage in a porcine model. Methods and results Twenty stents were implanted into 10 pigs and coronary OFDI was performed after 1, 3, 10, 14, and 28 days. Neointimal thickness as detected by OFDI correlated closely with neointimal thickness as measured by LM (r = 0.90, P < 0.01). The comparison of stent strut coverage as detected by OFDI and SEM analysis revealed an excellent agreement (r = 0.96, P < 0.01). In particular, stents completely covered by OFDI analysis were also completely covered by SEM analysis. All incompletely covered stents by OFDI were also incompletely covered by SEM. Analyses of fibrin-covered stent struts suggested that these may rarely be detected as uncovered stent struts by OFDI. Importantly, optical density measurements revealed a significant difference between fibrin- and neointima-covered coronary stent struts [0.395 (0.35–0.43) vs. 0.53 (0.47–0.57); P < 0.001], suggesting that differences in optical density provide information on the type of stent strut coverage. The sensitivity and specificity for detection of fibrin vs. neointimal coverage was evaluated using receiver-operating characteristic analysis. Conclusion The present study demonstrates that OFDI is a highly promising tool for accurate evaluation of coronary stent strut coverage, as supported by a high agreement between OFDI and light and electron microscopic analysis. Furthermore, our data indicate that optical density measurements can provide additional information with respect to the type of stent strut coverage, i.e. fibrin vs. neointimal coverage. Therefore, coronary OFDI analysis will provide important information on the biocompatibility of coronary stents.


European Heart Journal | 2011

Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6)

Christian Templin; Jelena-Rima Ghadri; Jean-Sébastien Rougier; Alessandra Baumer; Vladimir Kaplan; Maxime Albesa; Heinrich Sticht; Anita Rauch; Colleen Puleo; Dan Hu; Hector Barajas-Martinez; Charles Antzelevitch; Thomas F. Lüscher; Hugues Abriel; Firat Duru

AIMS Short QT syndrome (SQTS) is a genetically determined ion-channel disorder, which may cause malignant tachyarrhythmias and sudden cardiac death. Thus far, mutations in five different genes encoding potassium and calcium channel subunits have been reported. We present, for the first time, a novel loss-of-function mutation coding for an L-type calcium channel subunit. METHODS AND RESULTS The electrocardiogram of the affected member of a single family revealed a QT interval of 317 ms (QTc 329 ms) with tall, narrow, and symmetrical T-waves. Invasive electrophysiological testing showed short ventricular refractory periods and increased vulnerability to induce ventricular fibrillation. DNA screening of the patient identified no mutation in previously known SQTS genes; however, a new variant at a heterozygous state was identified in the CACNA2D1 gene (nucleotide c.2264G > C; amino acid p.Ser755Thr), coding for the Ca(v)α(2)δ-1 subunit of the L-type calcium channel. The pathogenic role of the p.Ser755Thr variant of the CACNA2D1 gene was analysed by using co-expression of the two other L-type calcium channel subunits, Ca(v)1.2α1 and Ca(v)β(2b), in HEK-293 cells. Barium currents (I(Ba)) were recorded in these cells under voltage-clamp conditions using the whole-cell configuration. Co-expression of the p.Ser755Thr Ca(v)α(2)δ-1 subunit strongly reduced the I(Ba) by more than 70% when compared with the co-expression of the wild-type (WT) variant. Protein expression of the three subunits was verified by performing western blots of total lysates and cell membrane fractions of HEK-293 cells. The p.Ser755Thr variant of the Ca(v)α(2)δ-1 subunit was expressed at a similar level compared with the WT subunit in both fractions. Since the mutant Ca(v)α(2)δ-1 subunit did not modify the expression of the pore-forming subunit of the L-type calcium channel, Ca(v)1.2α1, it suggests that single channel biophysical properties of the L-type channel are altered by this variant. CONCLUSION In the present study, we report the first pathogenic mutation in the CACNA2D1 gene in humans, which causes a new variant of SQTS. It remains to be determined whether mutations in this gene lead to other manifestations of the J-wave syndrome.


Circulation | 2012

Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression

Christian Templin; Robert Zweigerdt; Kristin Schwanke; Ruth Olmer; Jelena-Rima Ghadri; Maximilian Y. Emmert; Ennio Müller; Silke M. Küest; Susan Cohrs; Roger Schibli; Peter W. Kronen; Monika Hilbe; Andreas Reinisch; Dirk Strunk; Axel Haverich; Simon P. Hoerstrup; Thomas F. Lüscher; Philipp A. Kaufmann; Ulf Landmesser; Ulrich Martin

Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models.Background— Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction. Methods and Results— Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NISpos-hiPSCs) were established. Iodide uptake, efflux, and viability of NISpos-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NISpos-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of 123I to follow donor cell survival and distribution and with the use of 99mTC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NISpos-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NISpos-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected. Conclusions— This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NISpos-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models. # Clinical Perspective {#article-title-36}


Journal of Virology | 2000

Infection of Nonhuman Primate Cells by Pig Endogenous Retrovirus

Juergen H. Blusch; Clive Patience; Yasuhiro Takeuchi; Christian Templin; Christian Roos; Klaus von der Helm; G Steinhoff; Ulrich Martin

ABSTRACT The ongoing shortage of human donor organs for transplantation has catalyzed new interest in the application of pig organs (xenotransplantation). One of the biggest concerns about the transplantation of porcine grafts into humans is the transmission of pig endogenous retroviruses (PERV) to the recipients or even to other members of the community. Although nonhuman primate models are excellently suited to mimic clinical xenotransplantation settings, their value for risk assessment of PERV transmission at xenotransplantation is questionable since all of the primate cell lines tested so far have been found to be nonpermissive for PERV infection. Here we demonstrate that human, gorilla, and Papio hamadryas primary skin fibroblasts and also baboon B-cell lines are permissive for PERV infection. This suggests that a reevaluation of the suitability of the baboon model for risk assessment in xenotransplantation is critical at this point.


Circulation | 2012

Loss of AngiomiR-126 and 130a in Angiogenic Early Outgrowth Cells From Patients With Chronic Heart Failure Role for Impaired In Vivo Neovascularization and Cardiac Repair Capacity

Philipp Jakob; Carola Doerries; Sylvie Briand; Pavani Mocharla; Nicolle Kränkel; Christian Besler; Maja Mueller; Costantina Manes; Christian Templin; Christof Baltes; Markus Rudin; Heiner Adams; Mathias Wolfrum; Georg Noll; Frank Ruschitzka; Thomas F. Lüscher; Ulf Landmesser

Background— MicroRNAs are key regulators of angiogenic processes. Administration of angiogenic early outgrowth cells (EOCs) or CD34+ cells has been suggested to improve cardiac function after ischemic injury, in particular by promoting neovascularization. The present study therefore examines regulation of angiomiRs, microRNAs involved in angiogenesis, in angiogenic EOCs and circulating CD34+ cells from patients with chronic heart failure (CHF) and the role for their cardiac repair capacity. Methods and Results— Angiogenic EOCs and CD34+ cells were isolated from patients with CHF caused by ischemic cardiomyopathy (n=45) and healthy subjects (n=35). In flow cytometry analyses, angiogenic EOCs were largely myeloid and positive for alternatively activated M2 macrophage markers. In vivo cardiac neovascularization and functional repair capacity were examined after transplantation into nude mice with myocardial infarction. Cardiac transplantation of angiogenic EOCs from healthy subjects markedly increased neovascularization and improved cardiac function, whereas no such effect was observed after transplantation of angiogenic EOCs from patients with CHF. Real-time polymerase chain reaction analysis of 14 candidate angiomiRs, expressed in angiogenic EOCs, revealed a pronounced loss of angiomiR-126 and -130a in angiogenic EOCs from patients with CHF that was also observed in circulating CD34+ cells. Anti–miR-126 transfection markedly impaired the capacity of angiogenic EOCs from healthy subjects to improve cardiac function. miR-126 mimic transfection increased the capacity of angiogenic EOCs from patients with CHF to improve cardiac neovascularization and function. Conclusions— The present study reveals a loss of angiomiR-126 and -130a in angiogenic EOCs and circulating CD34+ cells from patients with CHF. Reduced miR-126 expression was identified as a novel mechanism limiting their capacity to improve cardiac neovascularization and function that can be targeted by miR-126 mimic transfection.Background— MicroRNAs are key regulators of angiogenic processes. Administration of angiogenic early outgrowth cells (EOCs) or CD34+ cells has been suggested to improve cardiac function after ischemic injury, in particular by promoting neovascularization. The present study therefore examines regulation of angiomiRs, microRNAs involved in angiogenesis, in angiogenic EOCs and circulating CD34+ cells from patients with chronic heart failure (CHF) and the role for their cardiac repair capacity. Methods and Results— Angiogenic EOCs and CD34+ cells were isolated from patients with CHF caused by ischemic cardiomyopathy (n=45) and healthy subjects (n=35). In flow cytometry analyses, angiogenic EOCs were largely myeloid and positive for alternatively activated M2 macrophage markers. In vivo cardiac neovascularization and functional repair capacity were examined after transplantation into nude mice with myocardial infarction. Cardiac transplantation of angiogenic EOCs from healthy subjects markedly increased neovascularization and improved cardiac function, whereas no such effect was observed after transplantation of angiogenic EOCs from patients with CHF. Real-time polymerase chain reaction analysis of 14 candidate angiomiRs, expressed in angiogenic EOCs, revealed a pronounced loss of angiomiR-126 and -130a in angiogenic EOCs from patients with CHF that was also observed in circulating CD34+ cells. Anti–miR-126 transfection markedly impaired the capacity of angiogenic EOCs from healthy subjects to improve cardiac function. miR-126 mimic transfection increased the capacity of angiogenic EOCs from patients with CHF to improve cardiac neovascularization and function. Conclusions— The present study reveals a loss of angiomiR-126 and -130a in angiogenic EOCs and circulating CD34+ cells from patients with CHF. Reduced miR-126 expression was identified as a novel mechanism limiting their capacity to improve cardiac neovascularization and function that can be targeted by miR-126 mimic transfection. # Clinical Perspective {#article-title-54}

Collaboration


Dive into the Christian Templin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge