Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carine Le Goff is active.

Publication


Featured researches published by Carine Le Goff.


Nature Genetics | 2008

ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation

Carine Le Goff; Fanny Morice-Picard; Nathalie Dagoneau; Lauren W. Wang; Claire Perrot; Yanick J. Crow; Florence Bauer; Elisabeth Flori; Catherine Prost-Squarcioni; Deborah Krakow; Gaoxiang Ge; Daniel S. Greenspan; Damien Bonnet; Martine Le Merrer; Arnold Munnich; Suneel S. Apte; Valérie Cormier-Daire

Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats–like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-β–binding protein 1. In addition, we observed a significant increase in total and active TGF-β in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-β signaling and may be the underlying mechanism of geleophysic dysplasia.


American Journal of Human Genetics | 2011

Mutations in the TGFβ Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias

Carine Le Goff; Clémentine Mahaut; Lauren W. Wang; Slimane Allali; Avinash Abhyankar; Sacha A. Jensen; Louise Zylberberg; Gwenaëlle Collod-Béroud; Damien Bonnet; Yasemin Alanay; Angela F. Brady; Marie-Pierre Cordier; Koenraad Devriendt; David Geneviève; Pelin Özlem Simsek Kiper; Hiroshi Kitoh; Deborah Krakow; Sally Ann Lynch; Martine Le Merrer; André Mégarbané; Geert Mortier; Sylvie Odent; Michel Polak; Marianne Rohrbach; David Sillence; Irene Stolte-Dijkstra; Andrea Superti-Furga; David L. Rimoin; Vicken Topouchian; Sheila Unger

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Nature Genetics | 2012

Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome

Carine Le Goff; Clémentine Mahaut; Avinash Abhyankar; Wilfried Le Goff; Valérie Serre; Alexandra Afenjar; A Destree; Maja Di Rocco; Delphine Héron; Sébastien Jacquemont; Sandrine Marlin; Marleen Simon; John Tolmie; Alain Verloes; Jean-Laurent Casanova; Arnold Munnich; Valérie Cormier-Daire

Myhre syndrome (MIM 139210) is a developmental disorder characterized by short stature, short hands and feet, facial dysmorphism, muscular hypertrophy, deafness and cognitive delay. Using exome sequencing of individuals with Myhre syndrome, we identified SMAD4 as a candidate gene that contributes to this syndrome on the basis of its pivotal role in the bone morphogenetic pathway (BMP) and transforming growth factor (TGF)-β signaling. We identified three distinct heterozygous missense SMAD4 mutations affecting the codon for Ile500 in 11 individuals with Myhre syndrome. All three mutations are located in the region of SMAD4 encoding the Mad homology 2 (MH2) domain near the site of monoubiquitination at Lys519, and we found a defect in SMAD4 ubiquitination in fibroblasts from affected individuals. We also observed decreased expression of downstream TGF-β target genes, supporting the idea of impaired TGF-β–mediated transcriptional control in individuals with Myhre syndrome.


American Journal of Human Genetics | 2012

Exome Sequencing Identifies PDE4D Mutations as Another Cause of Acrodysostosis

Caroline Michot; Carine Le Goff; Alice Goldenberg; Avinash Abhyankar; Céline Klein; Esther Kinning; Anne-Marie Guerrot; Philippe Flahaut; Alice Duncombe; Genevieve Baujat; Stanislas Lyonnet; Caroline Thalassinos; Patrick Nitschke; Jean-Laurent Casanova; Martine Le Merrer; Arnold Munnich; Valérie Cormier-Daire

Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368*]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368(∗)] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.


Human Molecular Genetics | 2011

The ADAMTS(L) family and human genetic disorders

Carine Le Goff; Valérie Cormier-Daire

ADAMTS designates a family of 19 secreted enzymes, whose the first member ADAMTS1 was described in 1997. The ADAMTS family has a role in extracellular matrix degradation and turn over and has previously been involved in various human biological processes, including connective tissue structure, cancer, coagulation, arthritis, angiogenesis and cell migration. More recently, the ADAMTS(L) family has been described, sharing the same ancillary domain but distinct by the absence of any enzyme activity. Mutations in ADAMTS13, ADAMTS2, ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 have been identified in distinct human genetic disorders ranging from thrombotic thrombocytopenic purpura to acromelic dysplasia. The aim of our review was to emphasize the role of this family in the extracellular matrix based on human phenotypes so far identified in relation with ADAMTS(L) mutations.


BMC Microbiology | 2007

Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci

Olivier Habimana; Carine Le Goff; Vincent Juillard; Marie-Noëlle Bellon-Fontaine; Girbe Buist; Saulius Kulakauskas; Romain Briandet

BackgroundThe first step in biofilm formation is bacterial attachment to solid surfaces, which is dependent on the cell surface physico-chemical properties. Cell wall anchored proteins (CWAP) are among the known adhesins that confer the adhesive properties to pathogenic Gram-positive bacteria. To investigate the role of CWAP of non-pathogen Gram-positive bacteria in the initial steps of biofilm formation, we evaluated the physico-chemical properties and adhesion to solid surfaces of Lactococcus lactis. To be able to grow in milk this dairy bacterium expresses a cell wall anchored proteinase PrtP for breakdown of milk caseins.ResultsThe influence of the anchored cell wall proteinase PrtP on microbial surface physico-chemical properties, and consequently on adhesion, was evaluated using lactococci carrying different alleles of prtP. The presence of cell wall anchored proteinase on the surface of lactococcal cells resulted in an increased affinity to solvents with different physico-chemical properties (apolar and Lewis acid-base solvents). These properties were observed regardless of whether the PrtP variant was biologically active or not, and were not observed in strains without PrtP. Anchored PrtP displayed a significant increase in cell adhesion to solid glass and tetrafluoroethylene surfaces.ConclusionObtained results indicate that exposure of an anchored cell wall proteinase PrtP, and not its proteolytic activity, is responsible for greater cell hydrophobicity and adhesion. The increased bacterial affinity to polar and apolar solvents indicated that exposure of PrtP on lactococcal cell surface could enhance the capacity to exchange attractive van der Waals interactions, and consequently increase their adhesion to different types of solid surfaces and solvents.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2012

From tall to short: The role of TGFβ signaling in growth and its disorders†

Carine Le Goff; Valérie Cormier-Daire

The acromelic dysplasia group is characterized by short stature, short hands and feet, stiff joint, and “muscular” build. Four disorders can now be ascribed to this group, namely Weill–Marchesani syndrome (WMS), geleophysic dysplasia (GD), acromicric dysplasia (AD), and Myhre syndrome (MS). Although closely similar, they can be distinguished by subtle clinical features and their pattern inheritance. WMS is characterized by the presence of dislocation of microspherophakia and has autosomal dominant or recessive mode of inheritance. GD is the more severe one, with a progressive cardiac valvular thickening, tracheal stenosis, bronchopulmonary insufficiency, often leading to an early death. AD has an autosomal dominant mode of inheritance, distinct facial and skeleton features (a hoarse voice and internal notch of the femoral head). Finally, MS is sporadic, characterized by prognathism, deafness, developmental delay, thickened calvarium, and large vertebrae with short and large pedicles. We first identified mutations in Fibrillin‐1 (FBN1) in the dominant form of WMS and then mutations in A Disintegrin‐like And Metalloproteinase domain with ThromboSpondin type 1 repeats 10 (ADAMTS10) in the recessive form of WMS. The function of ADAMTS10 is unknown but these findings support a direct interaction between ADAMTS10 and FBN1. We then identified mutations in ADAMTSL2 in the recessive form of GD and a hotspot of mutations in FBN1 in the dominant form of GD and in AD (exon 41–42, encoding TGFβ binding protein‐like domain 5 (TB5) of FBN1). The function of ADAMTSL2 is unknown. Using a yeast double hybrid screen, we identified latent transforming growth factor‐β (TGFβ) binding protein 1 as a partner of ADAMTSL2. We found an increased level of active TGFβ in the fibroblast medium from patients with FBN1 or ADAMTSL2 mutations and an enhanced phosphorylated SMAD2 level, allowing us to conclude at an enhanced TGFβ signaling in GD and AD. Finally, a direct interaction between ADAMTSL2 and FBN1 was demonstrated suggesting a dysregulation of FBN1/ADAMTSL2 interrelationship as the underlying mechanism of the short stature phenotypes. Using exome sequencing in MS probands, we identified de novo SMAD4 missense mutations, all involving isoleucine residue at position 500, in the MH2 domain. In MS fibroblasts, we found decreased ubiquitination level of SMAD4 and increased level of SMAD4 supporting a stabilization of SMAD4 protein. Functional SMAD4 is required for canonical signal transduction through the oligomerization with phosphorylated SMAD2/3 and SMAD1/5/8. We therefore studied the nuclear localization of mutant SMAD complexes and found that the complexes translocate to the nucleus. We finally observed a decreased expression of downstream TGFβ target genes supporting impaired TGFβ driven transcriptional control in MS. Our findings support a direct link between the short stature phenotypes and the TGFβ signaling. However, the finding of enhanced TGFβ signaling in Marfan phenotypes supports the existence of yet unknown mechanisms regulating TGFβ action.


American Journal of Human Genetics | 2009

Identification of CANT1 Mutations in Desbuquois Dysplasia

Céline Huber; Bénédicte Oulès; Marta Bertoli; Mounia Chami; Mélanie Fradin; Yasemin Alanay; Lihadh Al-Gazali; Margreet G. E. M. Ausems; Pierre Bitoun; Denise P. Cavalcanti; Alexander Krebs; Martine Le Merrer; Geert Mortier; Yousef Shafeghati; Andrea Superti-Furga; Stephen P. Robertson; Carine Le Goff; Andrea Onetti Muda; Patrizia Paterlini-Bréchot; Arnold Munnich; Valérie Cormier-Daire

Desbuquois dysplasia is a severe condition characterized by short stature, joint laxity, scoliosis, and advanced carpal ossification with a delta phalanx. Studying nine Desbuquois families, we identified seven distinct mutations in the Calcium-Activated Nucleotidase 1 gene (CANT1), which encodes a soluble UDP-preferring nucleotidase belonging to the apyrase family. Among the seven mutations, four were nonsense mutations (Del 5 UTR and exon 1, p.P245RfsX3, p.S303AfsX20, and p.W125X), and three were missense mutations (p.R300C, p.R300H, and p.P299L) responsible for the change of conserved amino acids located in the seventh nucleotidase conserved region (NRC). The arginine substitution at position 300 was identified in five out of nine families. The specific function of CANT1 is as yet unknown, but its substrates are involved in several major signaling functions, including Ca2+ release, through activation of pyrimidinergic signaling. Importantly, using RT-PCR analysis, we observed a specific expression in chondrocytes. We also found electron-dense material within distended rough endoplasmic reticulum in the fibroblasts of Desbuquois patients. Our findings demonstrate the specific involvement of a nucleotidase in the endochondral ossification process.


Journal of Medical Genetics | 2011

Molecular screening of ADAMTSL2 gene in 33 patients reveals the genetic heterogeneity of geleophysic dysplasia

Slimane Allali; Carine Le Goff; Isabelle Pressac-Diebold; Gwendoline Pfennig; Clémentine Mahaut; Nathalie Dagoneau; Yasemin Alanay; Angela F Brady; Yanick J. Crow; Koenraad Devriendt; Valérie Drouin-Garraud; Elisabeth Flori; David Geneviève; Raoul C. M. Hennekam; Jane Hurst; Deborah Krakow; Martine Le Merrer; Klaske D Lichtenbelt; Sally Ann Lynch; Stanislas Lyonnet; Kay D. MacDermot; Sahar Mansour; André Mégarbané; Heloisa G Santos; Miranda Splitt; Andrea Superti-Furga; Sheila Unger; Denise Williams; Arnold Munnich; Valérie Cormier-Daire

Background Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterised by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). Methods Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n=19). Results The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. Conclusions It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene.


European Journal of Human Genetics | 2010

In vitro readthrough of termination codons by gentamycin in the Stüve-Wiedemann Syndrome.

Samuel Bellais; Carine Le Goff; Nathalie Dagoneau; Arnold Munnich; Valérie Cormier-Daire

The Stüve–Wiedemann Syndrome (SWS) is a frequently lethal chondrodysplasia caused by null mutations in the leukemia inhibitory factor receptor gene (LIFR) responsible for an impaired activation of the JAK–STAT pathway after LIF stimulation. Most LIFR mutations are nonsense mutations, thus prompting us to investigate the impact of aminoglycosides on the readthrough of premature termination codons (PTCs). Culturing skin fibroblasts from three SWS patients and controls for 48u2009h in the presence of gentamycin (200–500u2009μg/ml) partially restored the JAK–STAT3 pathway when stimulated by LIF. Consistently, quantitative RT-PCR analysis showed that gentamycin stabilized LIFR mRNAs carrying UGA premature termination codons. We conclude that high gentamycin concentrations can partially restore functional LIFR protein synthesis in vitro, prompting us to investigate PTC readthrough using less toxic and more efficient drugs in this presently untreatable lethal condition.

Collaboration


Dive into the Carine Le Goff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnold Munnich

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Caroline Michot

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Marleen Simon

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Marlin

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Destree

Maastricht University

View shared research outputs
Top Co-Authors

Avatar

Irene Stolte-Dijkstra

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge