Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Odent is active.

Publication


Featured researches published by Sylvie Odent.


Archives of General Psychiatry | 2009

Recurrent Rearrangements in Synaptic and Neurodevelopmental Genes and Shared Biologic Pathways in Schizophrenia, Autism, and Mental Retardation

Audrey Guilmatre; Christèle Dubourg; A.L. Mosca; Solenn Legallic; Alice Goldenberg; Valérie Drouin-Garraud; Valérie Layet; Antoine Rosier; Sylvain Briault; Frédérique Bonnet-Brilhault; Frédéric Laumonnier; Sylvie Odent; Gael Le Vacon; Géraldine Joly-Hélas; Véronique David; Claude Bendavid; Jean-Michel Pinoit; C. Henry; Caterina Impallomeni; Eva Germanò; Gaetano Tortorella; Gabriella Di Rosa; Catherine Barthélémy; Christian R. Andres; Laurence Faivre; Thierry Frebourg; Pascale Saugier Veber; Dominique Campion

CONTEXT Results of comparative genomic hybridization studies have suggested that rare copy number variations (CNVs) at numerous loci are involved in the cause of mental retardation, autism spectrum disorders, and schizophrenia. OBJECTIVES To provide an estimate of the collective frequency of a set of recurrent or overlapping CNVs in 3 different groups of cases compared with healthy control subjects and to assess whether each CNV is present in more than 1 clinical category. DESIGN Case-control study. SETTING Academic research. PARTICIPANTS We investigated 28 candidate loci previously identified by comparative genomic hybridization studies for gene dosage alteration in 247 cases with mental retardation, in 260 cases with autism spectrum disorders, in 236 cases with schizophrenia or schizoaffective disorder, and in 236 controls. MAIN OUTCOME MEASURES Collective and individual frequencies of the analyzed CNVs in cases compared with controls. RESULTS Recurrent or overlapping CNVs were found in cases at 39.3% of the selected loci. The collective frequency of CNVs at these loci is significantly increased in cases with autism, in cases with schizophrenia, and in cases with mental retardation compared with controls (P < .001, P = .01, and P = .001, respectively, Fisher exact test). Individual significance (P = .02 without correction for multiple testing) was reached for the association between autism and a 350-kilobase deletion located at 22q11 and spanning the PRODH and DGCR6 genes. CONCLUSIONS Weakly to moderately recurrent CNVs (transmitted or occurring de novo) seem to be causative or contributory factors for these diseases. Most of these CNVs (which contain genes involved in neurotransmission or in synapse formation and maintenance) are present in the 3 pathologic conditions (schizophrenia, autism, and mental retardation), supporting the existence of shared biologic pathways in these neurodevelopmental disorders.


Nature Genetics | 2009

Mutations in the [beta]-tubulin gene TUBB2B result in asymmetrical polymicrogyria

Xavier H. Jaglin; Karine Poirier; Yoann Saillour; Emmanuelle Buhler; Guoling Tian; Nadia Bahi-Buisson; Catherine Fallet-Bianco; Françoise Phan-Dinh-Tuy; Xiang-Peng Kong; Pascale Bomont; Laëtitia Castelnau-Ptakhine; Sylvie Odent; Philippe Loget; Manoelle Kossorotoff; Irina Snoeck; Ghislaine Plessis; Philippe Parent; Cherif Beldjord; Carlos Cardoso; Alfonso Represa; Jonathan Flint; David A. Keays; Nicholas J. Cowan; Jamel Chelly

Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. Here we report de novo mutations in a β-tubulin gene, TUBB2B, in four individuals and a 27-gestational-week fetus with bilateral asymmetrical polymicrogyria. Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic neuronal cells in the white matter and in the leptomeningeal spaces due to breaches in the pial basement membrane. In utero RNAi-based inactivation demonstrates that TUBB2B is required for neuronal migration. We also show that two disease-associated mutations lead to impaired formation of tubulin heterodimers. These observations, together with previous data, show that disruption of microtubule-based processes underlies a large spectrum of neuronal migration disorders that includes not only lissencephaly and pachygyria, but also polymicrogyria malformations.


Nature Genetics | 2006

BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus

Corinne Stoetzel; Virginie Laurier; Erica E. Davis; Jean Muller; Suzanne Rix; Jose L. Badano; Carmen C. Leitch; Nabiha Salem; Eliane Chouery; Sandra Corbani; Nadine Jalk; Serge Vicaire; Pierre Sarda; Christian P. Hamel; Didier Lacombe; Muriel Holder; Sylvie Odent; Susan Holder; Alice S. Brooks; Nursel Elcioglu; Eduardo Silva; Béatrice Rossillion; Sabine Sigaudy; Thomy de Ravel; Richard Alan Lewis; Bruno Leheup; Alain Verloes; Patrizia Amati-Bonneau; André Mégarbané; Olivier Poch

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40–50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.


Circulation | 2009

Comparison of Clinical Presentations and Outcomes Between Patients With TGFBR2 and FBN1 Mutations in Marfan Syndrome and Related Disorders

David Attias; Chantal Stheneur; Carine Roy; Gwenaëlle Collod-Béroud; Delphine Detaint; Laurence Faivre; Marie-Ange Delrue; Laurence Cohen; Christine Francannet; Christophe Béroud; Mireille Claustres; Franck Iserin; Philippe Khau Van Kien; Didier Lacombe; Martine Le Merrer; Stanislas Lyonnet; Sylvie Odent; Henri Plauchu; Marlène Rio; Annick Rossi; Daniel Sidi; Philippe Gabriel Steg; Philippe Ravaud; Catherine Boileau; Guillaume Jondeau

Background— TGFBR2 mutations were recognized recently among patients with a Marfan-like phenotype. The associated clinical and prognostic spectra remain unclear. Methods and Results— Clinical features and outcomes of 71 patients with a TGFBR2 mutation (TGFBR2 group) were compared with 50 age- and sex-matched unaffected family members (control subjects) and 243 patients harboring FBN1 mutations (FBN1 group). Aortic dilatation was present in a similar proportion of patients in both the TGFBR2 and FBN1 groups (78% versus 79%, respectively) but was highly variable. The incidence and average age for thoracic aortic surgery (31% versus 27% and 35±16 versus 39±13 years, respectively) and aortic dissection (14% versus 10% and 38±12 versus 39±9 years) were also similar in the 2 groups. Mitral valve involvement (myxomatous, prolapse, mitral regurgitation) was less frequent in the TGFBR2 than in the FBN1 group (all P<0.05). Aortic dilatation, dissection, or sudden death was the index event leading to genetic diagnosis in 65% of families with TGFBR2 mutations, versus 32% with FBN1 mutations (P=0.002). The rate of death was greater in TGFBR2 families before diagnosis but similar once the disease had been recognized. Most pregnancies were uneventful (without death or aortic dissection) in both TGFBR2 and FBN1 families (38 of 39 versus 213 of 217; P=1). Seven patients (10%) with a TGFBR2 mutation fulfilled international criteria for Marfan syndrome, 3 of whom presented with features specific for Loeys-Dietz syndrome. Conclusions— Clinical outcomes appear similar between treated patients with TGFBR2 mutations and individuals with FBN1 mutations. Prognosis depends on clinical disease expression and treatment rather than simply the presence of a TGFBR2 gene mutation.


Annals of Neurology | 2005

OPA1 R445H mutation in optic atrophy associated with sensorineural deafness

Patrizia Amati-Bonneau; Agnès Guichet; Aurélien Olichon; Arnaud Chevrollier; Frédérique Viala; Stéphanie Miot; Carmen Ayuso; Sylvie Odent; Catherine Arrouet; Christophe Verny; Marie‐Noelle Calmels; Gilles Simard; Pascale Belenguer; Jing Wang; Jean-Luc Puel; Christian P. Hamel; Yves Malthièry; Dominique Bonneau; Guy Lenaers; Pascal Reynier

The heterozygous R445H mutation in OPA1 was found in five patients with optic atrophy and deafness. Audiometry suggested that the sensorineural deafness resulted from auditory neuropathy. Skin fibroblasts showed hyperfragmentation of the mitochondrial network, decreased mitochondrial membrane potential, and adenosine triphosphate synthesis defect. In addition, OPA1 was found to be widely expressed in the sensory and neural cochlear cells of the guinea pig. Thus, optic atrophy and deafness may be related to energy defects due to a fragmented mitochondrial network. Ann Neurol 2005


American Journal of Human Genetics | 2011

Mutations in the TGFβ Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias

Carine Le Goff; Clémentine Mahaut; Lauren W. Wang; Slimane Allali; Avinash Abhyankar; Sacha A. Jensen; Louise Zylberberg; Gwenaëlle Collod-Béroud; Damien Bonnet; Yasemin Alanay; Angela F. Brady; Marie-Pierre Cordier; Koenraad Devriendt; David Geneviève; Pelin Özlem Simsek Kiper; Hiroshi Kitoh; Deborah Krakow; Sally Ann Lynch; Martine Le Merrer; André Mégarbané; Geert Mortier; Sylvie Odent; Michel Polak; Marianne Rohrbach; David Sillence; Irene Stolte-Dijkstra; Andrea Superti-Furga; David L. Rimoin; Vicken Topouchian; Sheila Unger

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Human Mutation | 2010

Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome

Vincent Laugel; Cecile Dalloz; Myriam Durand; Florence Sauvanaud; Hans-Ulrik Kristensen; Marie-Claire Vincent; Laurent Pasquier; Sylvie Odent; Valérie Cormier-Daire; Blanca Gener; Edward S. Tobias; John Tolmie; Dominique Martin-Coignard; Valérie Drouin-Garraud; Delphine Héron; Hubert Journel; Emmanuel Raffo; Jaqueline Vigneron; Stanislas Lyonnet; Victoria Murday; Danielle Gubser-Mercati; Benoît Funalot; Louise Brueton; Jaime Sanchez del Pozo; E. Muñoz; Andrew R. Gennery; Mustafa A. Salih; Mehrdad Noruzinia; K. Prescott; L. Ramos

Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription‐coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late‐onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype–phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web‐based locus‐specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/). Hum Mutat 31:113–126, 2010.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2010

Analysis of Genotype-Phenotype Correlations in Human Holoprosencephaly

Benjamin D. Solomon; Sandra Mercier; Jorge I. Vélez; Daniel E. Pineda-Alvarez; Adrian Wyllie; Nan Zhou; Christèle Dubourg; Véronique David; Sylvie Odent; Erich Roessler; Maximilian Muenke

Since the discovery of the first gene causing holoprosencephaly (HPE), over 500 patients with mutations in genes associated with non‐chromosomal, non‐syndromic HPE have been described, with detailed descriptions available in over 300. Comprehensive clinical analysis of these individuals allows examination for the presence of genotype–phenotype correlations. These correlations allow a degree of differentiation between patients with mutations in different HPE‐associated genes and for the application of functional studies to determine intragenic correlations. These early correlations are an important advance in the understanding of the clinical aspects of this disease, and in general argue for continued analysis of the genetic and clinical findings of large cohorts of patients with rare diseases in order to better inform both basic biological insight and care and counseling for affected patients and families. Published 2010 Wiley‐Liss, Inc.


Annals of Neurology | 2008

Hereditary optic neuropathies share a common mitochondrial coupling defect

Arnaud Chevrollier; Virginie Guillet; Dominique Loiseau; Naïg Gueguen; Marie-Anne Pou de Crescenzo; Christophe Verny; Marc Ferré; Hélène Dollfus; Sylvie Odent; Dan Milea; Cyril Goizet; Patrizia Amati-Bonneau; Vincent Procaccio; Dominique Bonneau; Pascal Reynier

Hereditary optic neuropathies are heterogeneous diseases characterized by the degeneration of retinal ganglion cells leading to optic nerve atrophy and impairment of central vision. We found a common coupling defect of oxidative phosphorylation in fibroblasts of patients affected by autosomal dominant optic atrophy (mutations of OPA1), autosomal dominant optic atrophy associated with cataract (mutations of OPA3), and Lebers hereditary optic neuropathy, a disorder associated with point mutations of mitochondrial DNA complex I genes. Interestingly, the energetic defect was significantly more pronounced in Lebers hereditary optic neuropathy and autosomal dominant optic atrophy patients with a more complex phenotype, the so‐called plus phenotype. Ann Neurol 2008


Human Mutation | 2009

Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations.

Marc Ferré; Dominique Bonneau; Dan Milea; Arnaud Chevrollier; Christophe Verny; Hélène Dollfus; Carmen Ayuso; Sabine Defoort; Catherine Vignal; Xavier Zanlonghi; Jean‐Francois Charlin; Josseline Kaplan; Sylvie Odent; Christian P. Hamel; Vincent Procaccio; Pascal Reynier; Patrizia Amati-Bonneau

We report the results of molecular screening in 980 patients carried out as part of their work‐up for suspected hereditary optic neuropathies. All the patients were investigated for Lebers hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten primary LHON‐causing mtDNA mutations and examining the entire coding sequences of the OPA1 and OPA3 genes, the two genes currently identified in ADOA. Molecular defects were identified in 440 patients (45% of screened patients). Among these, 295 patients (67%) had an OPA1 mutation, 131 patients (30%) had an mtDNA mutation, and 14 patients (3%), belonging to three unrelated families, had an OPA3 mutation. Interestingly, OPA1 mutations were found in 157 (40%) of the 392 apparently sporadic cases of optic atrophy. The eOPA1 locus‐specific database now contains a total of 204 OPA1 mutations, including 77 novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work‐up of optic neuropathies. Our results highlight the importance of investigating LHON‐causing mtDNA mutations as well as OPA1 and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease.

Collaboration


Dive into the Sylvie Odent's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnold Munnich

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Annick Toutain

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge