Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl A. Power is active.

Publication


Featured researches published by Carl A. Power.


Journal of Immunological Methods | 1999

A valid ELISPOT assay for enumeration of ex vivo, antigen-specific, IFNγ-producing T cells

Carl A. Power; Cory L Grand; Nahed Ismail; Nathan Peters; Dean Yurkowski; Peter A. Bretscher

We describe an ELISPOT technique for the detection of antigen specific IFNgamma-producing T cells. The technique is performed on spleen cells plated directly ex vivo into ELISPOT trays without an in vitro pre-culture step. Thus, the assay is likely to reflect the in vivo activity of the cells. We have found that very high cell densities (at least 10(6) cells/well) are required for optimal detection of spot forming cells, and only at a high density of cells is the number of spots detected linearly related to the number of primed cells plated. If lower numbers of antigen primed cells are used, then unprimed spleen cells from syngeneic mice can be added to the well to increase the cell density. Under these conditions, we find that the number of spots is linearly proportional to the number of primed cells plated, even if these are well below a million cells/well. Experiments with MHC congenic mice indicate that the high density of spleen cells required to obtain optimal spot formation reflects a requirement for an MHC restricted function, probably efficient antigen presentation to T cells. The formation of IFNgamma spots is antigen dependent and abrogated by depleting the antigen primed cells of T cells. We conclude that this linear assay can be used to efficiently detect ex vivo antigen-specific IFNgamma-producing T cells.


Current Cancer Drug Targets | 2010

CD147/EMMPRIN and CD44 are Potential Therapeutic Targets for Metastatic Prostate Cancer

Jingli Hao; Paul Cozzi; Aparajita Khatri; Carl A. Power; Yong Li

Prostate cancer (CaP) is a major health problem in males in Western countries. Current therapeutic approaches are limited and many patients die of secondary disease (metastases). There is no cure for metastatic castration-resistant prostate cancer (CRPC). Targeting tumor-associated antigens is fast emerging as an area of promise to treat late stage and recurrent CaP. Extracellular matrix metalloproteinase inducer, EMMPRIN (CD147) is a multifunctional glycoprotein that can modify the tumor microenvironment by activating proteinases, inducing angiogenic factors in tumor and stromal cells, and regulating growth and survival of anchorage-independent tumor cells (micrometastases) and multidrug resistance (MDR). CD44 is a multifunctional protein involved in cell adhesion, migration and drug resistance, and is a primary receptor for hyaluronan (HA), a major component of the extracellular matrix (ECM) with a critical role in cell signaling and cell-ECM interactions in cancer. Our recent studies indicate both CD147 and CD44 are involved in cancer drug resistance and play very important roles in CaP metastasis. Thus, CD147 and CD44 may be ideal therapeutic targets to control metastatic and CRPC disease. This review will discuss their putative roles in CaP metastasis and MDR, and give an overview of literature regarding their expression on human CaP tissues. Additional focus will be on the potential of therapeutic strategies targeting CD147 and CD44 to prevent CaP metastasis and overcome drug resistance.


PLOS ONE | 2012

In Vitro and In Vivo Prostate Cancer Metastasis and Chemoresistance Can Be Modulated by Expression of either CD44 or CD147

Jingli Hao; Michele C. Madigan; Aparajita Khatri; Carl A. Power; Tzong-Tyng Hung; Julia Beretov; Lei Chang; Weiwei Xiao; Paul Cozzi; Peter H. Graham; John H. Kearsley; Yong Li

CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment.


Cancer and Metastasis Reviews | 2013

Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism

Boris Michael Holzapfel; Laure Thibaudeau; Parisa Hesami; Anna Taubenberger; Nina Pauline Holzapfel; Susanne Mayer-Wagner; Carl A. Power; Judith A. Clements; Pamela J. Russell; Dietmar W. Hutmacher

The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire “organ” bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.


PLOS ONE | 2011

IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms.

Brian Wan-Chi Tse; Pamela J. Russell; Matthias Lochner; Irmgard Förster; Carl A. Power

Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.


The Prostate | 2009

A Novel Model of Bone-Metastatic Prostate Cancer in Immunocompetent Mice

Carl A. Power; Hnin Pwint; Jeffrey Chan; Jae Cho; Yan Yu; William R. Walsh; Pamela J. Russell

Bone metastasis is a frequent and catastrophic consequence of prostate cancer for which only palliative treatment is available. Animal models of bone metastatic prostate cancer are necessary for understanding disease mechanisms but few models exist.


PLOS ONE | 2011

Zoledronic acid preserves bone structure and increases survival but does not limit tumour incidence in a prostate cancer bone metastasis model

Tzong-Tyng Hung; Jeffrey Chan; Pamela J. Russell; Carl A. Power

Background The bisphosphonate, zoledronic acid (ZOL), can inhibit osteoclasts leading to decreased osteoclastogenesis and osteoclast activity in bone. Here, we used a mixed osteolytic/osteoblastic murine model of bone-metastatic prostate cancer, RM1(BM), to determine how inhibiting osteolysis with ZOL affects the ability of these cells to establish metastases in bone, the integrity of the tumour-bearing bones and the survival of the tumour-bearing mice. Methods The model involves intracardiac injection for arterial dissemination of the RM1(BM) cells in C57BL/6 mice. ZOL treatment was given via subcutaneous injections on days 0, 4, 8 and 12, at 20 and 100 µg/kg doses. Bone integrity was assessed by micro-computed tomography and histology with comparison to untreated mice. The osteoclast and osteoblast activity was determined by measuring serum tartrate-resistant acid phosphatase 5b (TRAP 5b) and osteocalcin, respectively. Mice were euthanased according to predetermined criteria and survival was assessed using Kaplan Meier plots. Findings Micro-CT and histological analysis showed that treatment of mice with ZOL from the day of intracardiac injection of RM1(BM) cells inhibited tumour-induced bone lysis, maintained bone volume and reduced the calcification of tumour-induced endochondral osteoid material. ZOL treatment also led to a decreased serum osteocalcin and TRAP 5b levels. Additionally, treated mice showed increased survival compared to vehicle treated controls. However, ZOL treatment did not inhibit the cells ability to metastasise to bone as the number of bone-metastases was similar in both treated and untreated mice. Conclusions ZOL treatment provided significant benefits for maintaining the integrity of tumour-bearing bones and increased the survival of tumour bearing mice, though it did not prevent establishment of bone-metastases in this model. From the mechanistic view, these observations confirm that tumour-induced bone lysis is not a requirement for establishment of these bone tumours.


Molecular and Cellular Biology | 2012

The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.

Alister P. W. Funnell; Laura J. Norton; Ka Sin Mak; Jon Burdach; Crisbel M. Artuz; Natalie A. Twine; Marc R. Wilkins; Carl A. Power; Tzong-Tyng Hung; José Perdomo; Philip Koh; Kim S. Bell-Anderson; Stuart H. Orkin; Stuart T. Fraser; Andrew C. Perkins; Richard C. M. Pearson; Merlin Crossley

ABSTRACT The CACCC-box binding protein erythroid Krüppel-like factor (EKLF/KLF1) is a master regulator that directs the expression of many important erythroid genes. We have previously shown that EKLF drives transcription of the gene for a second KLF, basic Krüppel-like factor, or KLF3. We have now tested the in vivo role of KLF3 in erythroid cells by examining Klf3 knockout mice. KLF3-deficient adults exhibit a mild compensated anemia, including enlarged spleens, increased red pulp, and a higher percentage of erythroid progenitors, together with elevated reticulocytes and abnormal erythrocytes in the peripheral blood. Impaired erythroid maturation is also observed in the fetal liver. We have found that KLF3 levels rise as erythroid cells mature to become TER119+. Consistent with this, microarray analysis of both TER119− and TER119+ erythroid populations revealed that KLF3 is most critical at the later stages of erythroid maturation and is indeed primarily a transcriptional repressor. Notably, many of the genes repressed by KLF3 are also known to be activated by EKLF. However, the majority of these are not currently recognized as erythroid-cell-specific genes. These results reveal the molecular and physiological function of KLF3, defining it as a feedback repressor that counters the activity of EKLF at selected target genes to achieve normal erythropoiesis.


Journal of Clinical Investigation | 2015

Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease.

Holly A. Bolton; Erhua Zhu; Alexandra M. Terry; Thomas V. Guy; Woon-Puay Koh; Sioh-Yang Tan; Carl A. Power; Patrick Bertolino; Katharina Lahl; Tim Sparwasser; Elena Shklovskaya; Barbara Fazekas de St Groth

Regulatory T cells (Tregs) have been shown to enhance immune reconstitution and prevent graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation; however, it is unclear how Tregs mediate these effects. Here, we developed a model to examine the mechanism of Treg-dependent regulation of immune reconstitution. Lymphopenic mice were selectively reconstituted with Tregs prior to transfer of conventional CD4+ T cells. Full Treg reconstitution prevented the rapid oligoclonal proliferation that gives rise to pathogenic CD4 effector T cells, while preserving the slow homeostatic form of lymphopenia-induced peripheral expansion that repopulates a diverse peripheral T cell pool. Treg-mediated CTLA-4-dependent downregulation of CD80/CD86 on DCs was critical for inhibition of rapid proliferation and was a function of the Treg/DC ratio achieved by reconstitution. In an allogeneic BM transplant model, selective Treg reconstitution before T cell transfer also normalized DC costimulation and provided complete protection against GVHD. In contrast, cotransfer of Tregs was not protective. Our results indicate that achieving optimal recovery from lymphopenia should aim to improve early Treg reconstitution in order to increase the relative number of Tregs to DCs and thereby inhibit spontaneous oligoclonal T cell proliferation.


PLOS ONE | 2013

Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells

Weiwei Xiao; Peter H. Graham; Jingli Hao; Lei Chang; Jie Ni; Carl A. Power; Qihan Dong; John H. Kearsley; Yong Li

Radiation therapy (RT) continues to be one of the most popular treatment options for localized prostate cancer (CaP). The purpose of the study was to investigate the in vitro effect of LBH589 alone and in combination with RT on the growth and survival of CaP cell lines and the possible mechanisms of radiosensitization of this combination therapy. The effect of LBH589 alone or in combination with RT on two CaP cell lines (PC-3 and LNCaP) and a normal prostatic epithelial cell line (RWPE-1) was studied by MTT and clonogenic assays, cell cycle analysis, western blotting of apoptosis-related and cell check point proteins, and DNA double strand break (DSB) repair markers. The immunofluorescence staining was used to further confirm DSB expression in treated CaP cells. Our results indicate that LBH589 inhibited proliferation in both CaP and normal prostatic epithelial cells in a time-and-dose-dependent manner; low-dose of LBH589 (IC20) combined with RT greatly improved efficiency of cell killing in CaP cells; compared to RT alone, the combination treatment with LBH589 and RT induced more apoptosis and led to a steady increase of sub-G1 population and abolishment of RT-induced G2/M arrest, increased and persistent DSB, less activation of non-homologous end joining (NHEJ)/homologous recombination (HR) repair pathways and a panel of cell cycle related proteins. These results suggest that LBH589 is a potential agent to increase radiosensitivity of human CaP cells. LBH589 used either alone, or in combination with RT is an attractive strategy for treating human CaP.

Collaboration


Dive into the Carl A. Power's collaboration.

Top Co-Authors

Avatar

Pamela J. Russell

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yong Li

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Tzong-Tyng Hung

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingli Hao

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Brendan Lee

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Brian Wan-Chi Tse

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Michael Holzapfel

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dietmar W. Hutmacher

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge