Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl D. Bortner is active.

Publication


Featured researches published by Carl D. Bortner.


Journal of Biological Chemistry | 1997

A Primary Role for K+ and Na+ Efflux in the Activation of Apoptosis

Carl D. Bortner; Francis M. Hughes; John A. Cidlowski

Cell shrinkage is a major characteristic of apoptosis, but the mechanism and role of this process in cell death are poorly understood. The primary factor that controls volume regulation in all cells is ions, and thus we have examined the movement of ions at the single cell level in lymphocytes during apoptosis. Activation of the death program with several stimuli that act through independent pathways to stimulate apoptosis results in a synchronous shift of cells from a normal cell size to a shrunken cell size. Only the shrunken cells exhibit DNA fragmentation and an approximate 4-fold elevation of caspase-3-like activity. Analysis of K+ and Na+ ion content of individual cells by flow cytometry revealed that the intracellular ionic strength of apoptotic cells decreased substantially from their non-shrunken counterparts. Additionally, we show apoptosis is enhanced under conditions where the intracellular K+ concentration is diminished and that apoptosis is inhibited when K+ efflux is prevented. These data show that the efflux of ions, primarily potassium, plays a necessary and perhaps a pivotal role in the cell death program.


Journal of Biological Chemistry | 1997

Intracellular K+ Suppresses the Activation of Apoptosis in Lymphocytes

Francis M. Hughes; Carl D. Bortner; Geoffrey D. Purdy; John A. Cidlowski

Little is known about the mechanisms of suppression of apoptosis. We have addressed the novel possibility that the level of intracellular K+ regulates the apoptotic process by controlling the activity of death enzymes. We show that K+, at normal intracellular levels, inhibits both apoptotic DNA fragmentation and caspase-3(CPP32)-like protease activation, suggesting that intracellular K+ loss must occur early during apoptosis. Direct measurement of K+ by inductively coupled plasma/mass spectrometry and flow cytometry indicates a major decrease in intracellular K+ concentration in the apoptotic cell. Flow cytometric analysis revealed that caspase and nuclease activity were restricted to the subpopulation of cells with reduced K+. Disruption of the natural K+electrochemical gradient suppressed the activity of both caspase and nuclease independent of the mode of activation of the apoptotic inducing agent, demonstrating that a decrease in intracellular K+ concentration is a necessary, early event in programmed cell death.


Journal of Biological Chemistry | 1999

Caspase Independent/Dependent Regulation of K+, Cell Shrinkage, and Mitochondrial Membrane Potential during Lymphocyte Apoptosis

Carl D. Bortner; John A. Cidlowski

The loss of cell volume is a fundamental feature of apoptosis. We have previously shown that DNA degradation and caspase activity occur only in cells which have shrunken as a result of potassium and sodium efflux (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436–32442). Furthermore, maintaining a normal intracellular potassium concentration represses the cell death process by inhibiting the activity of apoptotic nucleases and suppressing the activation of effector caspases (Hughes, F. M., Jr., Bortner, C. D. Purdy, G. D., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 30567–30576). We have now investigated the relationship between cell shrinkage, ion efflux, and changes in the mitochondrial membrane potential, in addition to the role of caspases in these apoptotic events. Treatment of Jurkat cells with a series of inducers which act via distinct signal transduction pathways, resulted in all of the cell death characteristics including loss of cell viability, cell shrinkage, K+ efflux, altered mitochondrial membrane potential, and DNA fragmentation. Interestingly, only cells which shrunk had a loss of mitochondrial membrane potential and the other apoptotic characteristics. Treatment of Jurkat cells with an anti-Fas antibody in the presence of the general caspase inhibitor z-VAD, abrogated these features. In contrast, when Jurkat cells were treated with either the calcium ionophore A23187 or thapsigargin, z-VAD failed to prevent cell shrinkage, K+ efflux, or changes in the mitochondrial membrane potential, while effectively inhibiting DNA degradation. Treatment of Jurkat cells with various apoptotic agents in the presence of either the caspase-3 inhibitor DEVD, or the caspase-8 inhibitor IETD also blocked DNA degradation, but failed to prevent other characteristics of apoptosis. Together these data suggest that the cell shrinkage, K+ efflux, and changes in the mitochondrial membrane potential are tightly coupled, but occur independent of DNA degradation, and can be largely caspase independent depending on the particular signal transduction pathway.


Biochemical Pharmacology | 1998

A necessary role for cell shrinkage in apoptosis

Carl D. Bortner; John A. Cidlowski

The loss of cell volume is a fundamental and universal characteristic of programmed cell death. However, what was once thought to be a passive, secondary feature of the cell death process has now become an area of research interest. Recent studies have integrated cell volume regulation and the movement of ions with the activation of apoptosis. A dramatic reduction of potassium and sodium concentration has been shown to occur in apoptotic cells that exhibit a shrunken morphology. Furthermore, maintaining the normal physiological intracellular concentration of monovalent ions, particularly potassium, inhibits the activation and activity of the death cascades. Thus, the role ions play during apoptosis is more extensive than just facilitation of the loss of cell volume. In this article, we will review the concepts of cell volume regulation and the loss of volume during apoptosis. Additionally, we will underscore our current understanding of ion movement as it relates to the activation of the cell death process.


Neuroscience | 2007

Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity

Po-See Chen; Chao-Chuan Wang; Carl D. Bortner; Giia-Sheun Peng; Xuefei Wu; Hao Pang; Ru-Band Lu; Po-Wu Gean; De-Maw Chuang; Jau-Shyong Hong

Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, has been shown to be an inhibitor of histone deacetylase (HDAC). Our previous study has demonstrated that VPA pretreatment reduces lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity through the inhibition of microglia over-activation. The aim of this study was to determine the mechanism underlying VPA-induced attenuation of microglia over-activation using rodent primary neuron/glia or enriched glia cultures. Other histone deacetylase inhibitors (HDACIs) were compared with VPA for their effects on microglial activity. We found that VPA induced apoptosis of microglia cells in a time- and concentration-dependent manner. VPA-treated microglial cells showed typical apoptotic hallmarks including phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Further studies revealed that trichostatin A (TSA) and sodium butyrate (SB), two structurally dissimilar HDACIs, also induced microglial apoptosis. The apoptosis of microglia was accompanied by the disruption of mitochondrial membrane potential and the enhancement of acetylation levels of the histone H3 protein. Moreover, pretreatment with SB or TSA caused a robust decrease in LPS-induced pro-inflammatory responses and protected DA neurons from damage in mesencephalic neuron-glia cultures. Taken together, our results shed light on a novel mechanism whereby HDACIs induce neuroprotection and underscore the potential utility of HDACIs in preventing inflammation-related neurodegenerative disorders such as Parkinsons disease.


Journal of Biological Chemistry | 2003

Cell Sorting Experiments Link Persistent Mitochondrial DNA Damage with Loss of Mitochondrial Membrane Potential and Apoptotic Cell Death

Janine H. Santos; L'uba Hunakova; Yiming Chen; Carl D. Bortner; Bennett Van Houten

In order to understand the molecular events following oxidative stress, which lead to persistence of lesions in the mtDNA, experiments were performed on normal human fibroblast (NHF) expressing human telomerase reverse transcriptase (hTERT). The formation and repair of H2O2-induced DNA lesions were examined using quantitative PCR. It was found that NHF hTERTs show extensive mtDNA damage (∼4 lesions/10 kb) after exposure to 200 μm H2O2, which is partially repaired during a recovery period of 6 h. At the same time, the nDNA seemed to be completely resistant to damage. Cell sorting experiments revealed persistent mtDNA damage at 24 h only in the fraction of cells with low mitochondrial membrane potential (ΔΨm). Further analysis also showed increased production of H2O2 by these cells, which subsequently undergo apoptosis. This work supports a hypothesis for a feed-forward cascade of reactive oxygen species generation and mtDNA damage and also suggested a possible mechanism for persistence of lesions in the mtDNA involving a drop in ΔΨm, compromised protein import, secondary reactive oxygen species generation, and loss of repair capacity.


Journal of Biological Chemistry | 2003

Uncoupling Cell Shrinkage from Apoptosis Reveals That Na+ Influx Is Required for Volume Loss during Programmed Cell Death

Carl D. Bortner; John A. Cidlowski

Cell shrinkage, or the loss of cell volume, is a ubiquitous characteristic of programmed cell death that is observed in all examples of apoptosis, independent of the death stimulus. This decrease in cell volume occurs in synchrony with other classical features of apoptosis. The molecular basis for cell shrinkage during apoptosis involves fluxes of intracellular ions including K+, Na+, and Cl-. Here we show for the first time that these ion fluxes, but not cell shrinkage, are necessary for apoptosis. Using sodium-substituted medium during anti-Fas treatment of Jurkat cells, we observed cellular swelling, a property normally associated with necrosis, in contrast to the typical cell shrinkage. Surprisingly, these swollen cells displayed all of the other classical features of apoptosis, including chromatin condensation, externalization of phosphatidylserine, caspase activity, poly(ADP)-ribose polymerase cleavage, and internucleosomal DNA degradation. These swollen cells had a marked decrease in intracellular potassium, and subsequent inhibition of this potassium loss completely blocked apoptosis. Reintroduction of sodium ions in cell cultures reversed this cellular swelling, resulting in a dramatic loss of cell volume and the characteristic apoptotic morphology. Additionally, inhibition of sodium influx using a sodium channel blocker saxitoxin completely prevented the onset of anti-Fas-induced apoptosis in Jurkat cells. These findings suggest that sodium influx can control not only changes in cell size but also the activation of apoptosis, whereas potassium ion loss controls the progression of the cell death process. Therefore cell shrinkage can be separated from other features of apoptosis.


Pflügers Archiv: European Journal of Physiology | 2004

The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis

Carl D. Bortner; John A. Cidlowski

The mechanism of activation and repression of apoptosis has been a central focus of many studies examining the role of programmed cell death in both normal and pathological conditions. Despite intensive research efforts, the precise cellular and molecular mechanisms that trigger and/or prevent apoptosis remain undefined. A universal characteristic of apoptosis is the loss of cell volume or cell shrinkage, recently termed apoptotic volume decrease. While cell shrinkage has traditionally been viewed as a passive event during apoptosis, recent work from several laboratories has shown that the loss of cell volume, or more specifically the flux of ions associated with the change in cell size, play a critical role in the regulation of the cell death machinery. On going studies continue to support the hypothesis that the change in intracellular ions can alter a cells decision to die by apoptosis.


Cancer Research | 2007

CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice

Carol S. Trempus; Rebecca J. Morris; Matthew Ehinger; Amy Elmore; Carl D. Bortner; Mayumi Ito; George Cotsarelis; Joanne G.W. Nijhof; John C. Peckham; Norris D. Flagler; Grace E. Kissling; Margaret M. Humble; Leon C. King; Linda Adams; Dhimant Desai; Shantu Amin; Raymond W. Tennant

The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice.


The Journal of Membrane Biology | 2006

Potential Roles of Electrogenic Ion Transport and Plasma Membrane Depolarization in Apoptosis

Rodrigo Franco; Carl D. Bortner; John A. Cidlowski

Apoptosis is characterized by the programmed activation of specific biochemical pathways leading to the organized demise of cells. To date, aspects of the intracellular signaling machinery involved in this phenomenon have been extensively dissected and characterized. However, recent studies have elucidated a novel role for changes in the intracellular milieu of the cells as important modulators of the cell death program. Specially, intracellular ionic homeostasis has been reported to be a determinant in both the activation and progression of the apoptotic cascade. Several apoptotic insults trigger specific changes in ionic gradients across the plasma membrane leading to depolarization of the plasma membrane potential (PMP). These changes lead to ionic imbalance early during apoptosis. Several studies have also suggested the activation and/or modulation of specific ionic transport mechanisms including ion channels, transporters and ATPases, as mediators of altered intracellular ionic homeostasis leading to PMP depolarization during apoptosis. However, the role of PMP depolarization and of the changes in ionic homeostasis during the progression of apoptosis are still unclear. This review summarizes the current knowledge regarding the causes and consequences of PMP depolarization during apoptosis. We also review the potential electrogenic ion transport mechanisms associated with this event, including the net influx/efflux of cations and anions. An understanding of these mechamisms could lead to the generation of new therapeutic approaches for a variety of diseases involving apoptosis.

Collaboration


Dive into the Carl D. Bortner's collaboration.

Top Co-Authors

Avatar

John A. Cidlowski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maria I. Sifre

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anton M. Jetten

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carol S. Trempus

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Raymond W. Tennant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael P. Waalkes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis M. Hughes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Grace Liao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hong Soon Kang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge