Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl J. Neumann is active.

Publication


Featured researches published by Carl J. Neumann.


Nature Genetics | 1999

A radiation hybrid map of the zebrafish genome

Robert Geisler; Gerd-Jörg Rauch; Herwig Baier; Frauke van Bebber; Linda Broβ; Marcus P.S. Dekens; Karin Finger; Cornelia Fricke; Michael A. Gates; Horst Geiger; Silke Geiger-Rudolph; Darren Gilmour; Stefanie Glaser; Lara Gnügge; Hinrich Alexander Habeck; Katy Hingst; Scott A. Holley; Jeremy Keenan; Anette Kirn; Holger Knaut; Deval Lashkari; Florian Maderspacher; Ulrike Martyn; Stephan C.F. Neuhauss; Carl J. Neumann; Teresa Nicolson; Francisco Pelegri; Russell S. Ray; Jens M. Rick; Henry Roehl

Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.


Development | 2004

Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina

Alena Shkumatava; Sabine Fischer; Ferenc Müller; Uwe Strähle; Carl J. Neumann

Neurogenesis in the zebrafish retina occurs in several waves of differentiation. The first neurogenic wave generates ganglion cells and depends on hedgehog (hh) signaling activity. Using transgenic zebrafish embryos that express GFP under the control of the sonic hedgehog (shh) promoter, we imaged the differentiation wave in the retina and show that, in addition to the wave in the ganglion cell layer, shh expression also spreads in the inner nuclear layer. This second wave generates amacrine cells expressing shh, and although it overlaps temporally with the first wave, it does not depend on it, as it occurs in the absence of ganglion cells. We also show that differentiation of cell types found in the inner and outer nuclear layers, as well as lamination of the retina, depends on shh. By performing mosaic analysis, we demonstrate that Shh directs these events as a short-range signal within the neural retina.


Development | 2003

The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation

Sabine Fischer; Bruce W. Draper; Carl J. Neumann

The development of vertebrate limb buds is triggered in the lateral plate mesoderm by a cascade of genes, including members of the Fgf and Wnt families, as well as the transcription factor tbx5. Fgf8, which is expressed in the intermediate mesoderm, is thought to initiate forelimb formation by activating wnt2b, which then induces the expression of tbx5 in the adjacent lateral plate mesoderm. Tbx5, in turn, is required for the activation of fgf10, which relays the limb inducing signal to the overlying ectoderm. We show that the zebrafish fgf24 gene, which belongs to the Fgf8/17/18 subfamily of Fgf ligands, acts downstream of tbx5 to activate fgf10 expression in the lateral plate mesoderm. We also show that fgf24 activity is necessary for the migration of tbx5-expressing cells to the fin bud, and for the activation of shh, but not hand2, expression in the posterior fin bud.


Development | 2005

HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development.

William Norton; Johan Ledin; Heiner Grandel; Carl J. Neumann

Heparan sulphate proteoglycans (HSPGs) are known to be crucial for signalling by the secreted Wnt, Hedgehog, Bmp and Fgf proteins during invertebrate development. However, relatively little is known about their effect on developmental signalling in vertebrates. Here, we report the analysis of daedalus, a novel zebrafish pectoral fin mutant. Positional cloning identified fgf10 as the gene disrupted in daedalus. We find that fgf10 mutants strongly resemble zebrafish ext2 and extl3 mutants, which encode glycosyltransferases required for heparan sulphate biosynthesis. This suggests that HSPGs are crucial for Fgf10 signalling during limb development. Consistent with this proposal, we observe a strong genetic interaction between fgf10 and extl3 mutants. Furthermore, application of Fgf10 protein can rescue target gene activation in fgf10, but not in ext2 or extl3 mutants. By contrast, application of Fgf4 protein can activate target genes in both ext2 and extl3 mutants, indicating that ext2 and extl3 are differentially required for Fgf10, but not Fgf4, signalling during limb development. This reveals an unexpected specificity of HSPGs in regulating distinct vertebrate Fgfs.


Development | 2005

Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones

William Norton; M Mangoli; Zsolt Lele; H M Pogoda; B Diamond; S Mercurio; Claire Russell; Hiroki Teraoka; H L Stickney; Gerd-Jörg Rauch; Carl-Philipp Heisenberg; Corinne Houart; Thomas F. Schilling; H G Frohnhoefer; S Rastegar; Carl J. Neumann; R M Gardiner; Uwe Strähle; Robert Geisler; M Rees; William S. Talbot; Stephen W. Wilson

In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphé nucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.


Development | 2006

Prdm1 acts downstream of a sequential RA, Wnt and Fgf signaling cascade during zebrafish forelimb induction

Nadia Mercader; Sabine Fischer; Carl J. Neumann

Vertebrate limb induction is triggered in the lateral plate mesoderm (LPM) by a cascade of signaling events originating in the axial mesoderm. While it is known that Fgf, Wnt and retinoic acid (RA) signals are involved in this cascade, their precise regulatory hierarchy has not been determined in any species. tbx5 is the earliest gene expressed in the limb bud mesenchyme. Recently, another transcription factor, Prdm1, has been shown to be crucial for zebrafish forelimb development. Here, we show that Prdm1 is downstream of RA, Wnt2b and Tbx5 activity. We find that RA activity, but not Fgf signaling, is necessary for wnt2b expression. Fgf signaling is required for prdm1 expression in the fin bud, but is not necessary for the initiation of tbx5 expression. We propose a model in which RA signaling from the somitic mesoderm leads to activation of wnt2b expression in the intermediate mesoderm, which then signals to the LPM to trigger tbx5 expression. tbx5 is required for Fgf signaling in the limb bud leading to activation of prdm1 expression, which in turn is required for downstream activation of fgf10 expression.


Development | 2007

Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development

Isabelle Manfroid; François M Delporte; Ariane Baudhuin; Patrick Motte; Carl J. Neumann; Marianne Voz; Joseph Martial; Bernard Peers

In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.


Developmental Dynamics | 2003

Cyclops‐independent floor plate differentiation in zebrafish embryos

Stephanie Albert; Ferenc Müller; Nadine Fischer; Dominique Biellmann; Carl J. Neumann; Patrick Blader; Uwe Strähle

In zebrafish, development of the ventral neural tube depends on the Nodal‐related signal Cyclops (Cyc). One‐day‐old cyc mutant embryos lack the medial floor plate (MFP). We show here that cells expressing MFP marker genes differentiate gradually in cyc mutant embryos in a delayed manner during the second day of development. This late differentiation is restricted to the hindbrain and spinal cord and depends on an intact Hedgehog (Hh) signalling pathway. Cells expressing MFP marker genes in cyc mutant embryos appear to be derived from lateral floor plate (LFP) cells as they coexpress LFP and MFP marker genes. This finding suggests that the correct temporal development of the MFP is required for the distinction of LFP and MFP cells in wild‐type embryos.


Cell Cycle | 2007

Mutation of Zebrafish caf-1b Results in S Phase Arrest, Defective Differentiation, and p53-Mediated Apoptosis During Organogenesis

Sabine Fischer; Sergey V Prykhozhij; Marlene J. Rau; Carl J. Neumann

The cell cycle of multicellular organisms must be tightly coordinated with organogenesis and differentiation. Experiments done in vitro have identified chromatin assembly factor 1 (CAF-1) as a protein complex promoting chromatin assembly during DNA replication, but the in vivo role of CAF-1 in multicellular animals is still poorly understood. Here we describe the characterization of a zebrafish mutant disrupting CAF-1b activity, and show that it leads to defective cell cycle progression and differentiation in several organs, including the retina, optic tectum, pectoral fins, and head skeleton. Retinal precursor cells mutant for caf-1b arrest in S phase and undergo p53-mediated apoptosis. While p53 deficiency is able to rescue apoptosis in caf-1b mutants, it fails to rescue differentiation, indicating that CAF-1 activity is essential for differentiation in these organs. In addition, we also show that regulation of caf-1b expression in the retina depends on a group of genes that regulate the switch from proliferation to differentiation.


BMC Developmental Biology | 2008

Distinct roles of Shh and Fgf signaling in regulating cell proliferation during zebrafish pectoral fin development

Sergey V Prykhozhij; Carl J. Neumann

BackgroundCell proliferation in multicellular organisms must be coordinated with pattern formation. The major signaling pathways directing pattern formation in the vertebrate limb are well characterized, and we have therefore chosen this organ to examine the interaction between proliferation and patterning. Two important signals for limb development are members of the Hedgehog (Hh) and Fibroblast Growth Factor (Fgf) families of secreted signaling proteins. Sonic hedgehog (Shh) directs pattern formation along the anterior/posterior axis of the limb, whereas several Fgfs in combination direct pattern formation along the proximal/distal axis of the limb.ResultsWe used the genetic and pharmacological amenability of the zebrafish model system to dissect the relative importance of Shh and Fgf signaling in regulating proliferation during development of the pectoral fin buds. In zebrafish mutants disrupting the shh gene, proliferation in the pectoral fin buds is initially normal, but later is strongly reduced. Correlating with this reduction, Fgf signaling is normal at early stages, but is later lost in shh mutants. Furthermore, pharmacological inhibition of Hh signaling for short periods has little effect on either Fgf signaling, or on expression of G1- and S-phase cell-cycle genes, whereas long periods of inhibition lead to the downregulation of both. In contrast, even short periods of pharmacological inhibition of Fgf signaling lead to strong disruption of proliferation in the fin buds, without affecting Shh signaling. To directly test the ability of Fgf signaling to regulate proliferation in the absence of Shh signaling, we implanted beads soaked with Fgf protein into shh mutant fin buds. We find that Fgf-soaked beads rescue proliferation in the pectoral find buds of shh mutants, indicating that Fgf signaling is sufficient to direct proliferation in zebrafish fin buds in the absence of Shh.ConclusionPrevious studies have shown that both Shh and Fgf signaling are crucial for outgrowth of the vertebrate limb. The results presented here show that the role of Shh in this process is indirect, and is mediated by its effect on Fgf signaling. By contrast, the activity of the Fgf pathway affects proliferation directly and independently of its effect on Shh. These results show that Fgf signaling is of primary importance in directing outgrowth of the limb bud, and clarify the role of the Shh-Fgf feedback loop in regulating proliferation.

Collaboration


Dive into the Carl J. Neumann's collaboration.

Top Co-Authors

Avatar

Sabine Fischer

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Cohen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Uwe Strähle

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alena Shkumatava

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferenc Müller

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

M Mangoli

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge