Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corinne Houart is active.

Publication


Featured researches published by Corinne Houart.


Developmental Cell | 2004

Early steps in the development of the forebrain.

Stephen W. Wilson; Corinne Houart

The tremendous complexity of the adult forebrain makes it a challenging task to elucidate how this structure forms during embryonic development. Nevertheless, we are beginning to understand how a simple epithelial sheet of ectoderm gives rise to the labyrinthine network of cells that constitutes the functional forebrain. Here, we discuss early events in forebrain development--those that lead to the establishment of the anterior neural plate and the regional subdivision of this territory into the different domains of the prospective forebrain.


Neuron | 2002

Establishment of the Telencephalon during Gastrulation by Local Antagonism of Wnt Signaling

Corinne Houart; Luca Caneparo; Carl-Philipp Heisenberg; K. Anukampa Barth; Masaya Take-uchi; Stephen W. Wilson

Cells at the anterior boundary of the neural plate (ANB) can induce telencephalic gene expression when transplanted to more posterior regions. Here, we identify a secreted Frizzled-related Wnt antagonist, Tlc, that is expressed in ANB cells and can cell nonautonomously promote telencephalic gene expression in a concentration-dependent manner. Moreover, abrogation of Tlc function compromises telencephalic development. We also identify Wnt8b as a locally acting modulator of regional fate in the anterior neural plate and a likely target for antagonism by Tlc. Finally, we show that tlc expression is regulated by signals that establish early antero-posterior and dorso-ventral ectodermal pattern. From these studies, we propose that local antagonism of Wnt activity within the anterior ectoderm is required to establish the telencephalon.


Cell Reports | 2013

Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

Youn Bok Lee; Han-Jou Chen; João N. Peres; Jorge Gomez-Deza; Maja Štalekar; Claire Troakes; Agnes L. Nishimura; Emma L. Scotter; Caroline Vance; Yoshitsugu Adachi; Valentina Sardone; John Miller; Bradley Smith; Jean-Marc Gallo; Jernej Ule; Frank Hirth; Boris Rogelj; Corinne Houart; Christopher Shaw

Summary The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


Neuron | 2005

Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/β-catenin pathway

Florencia Cavodeassi; Filipa Carreira-Barbosa; Rodrigo M. Young; Miguel L. Concha; Miguel L. Allende; Corinne Houart; Masazumi Tada; Stephen W. Wilson

During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with cell behavior during eye field formation. Wnt/beta-catenin signaling antagonizes eye specification through the activity of Wnt8b and Fz8a. In contrast, Wnt11 and Fz5 promote eye field development, at least in part, through local antagonism of Wnt/beta-catenin signaling. Additionally, Wnt11 regulates the behavior of eye field cells, promoting their cohesion. Together, these results allow us to postulate a model in which Wnt11 and Fz5 signaling promotes early eye development through the coordinated antagonism of signals that suppress retinal identity and promotion of coherence of eye field cells.


Developmental Cell | 2009

Integration of Telencephalic Wnt and Hedgehog Signaling Center Activities by Foxg1

Catherine Danesin; João N. Peres; Marie Johansson; Victoria Snowden; Amy Cording; Nancy Papalopulu; Corinne Houart

The forebrain is patterned along the dorsoventral (DV) axis by Sonic Hedgehog (Shh). However, previous studies have suggested the presence of an Shh-independent mechanism. Our study identifies Wnt/beta-catenin-activated from the telencephalic roof-as an Shh-independent pathway that is essential for telencephalic pallial (dorsal) specification during neurulation. We demonstrate that the transcription factor Foxg1 coordinates the activity of two signaling centers: Foxg1 is a key downstream effector of the Shh pathway during induction of subpallial (ventral) identity, and it inhibits Wnt/beta-catenin signaling through direct transcriptional repression of Wnt ligands. This inhibition restricts the dorsal Wnt signaling center to the roof plate and consequently limits pallial identities. Concomitantly to these roles, Foxg1 controls the formation of the compartment boundary between telencephalon and basal diencephalon. Altogether, these findings identify a key direct target of Foxg1, and uncover a simple molecular mechanism by which Foxg1 integrates two opposing signaling centers.


Development | 2004

Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains

Tetsuhiro Kudoh; Miguel L. Concha; Corinne Houart; Igor B. Dawid; Stephen W. Wilson

Studies in fish and amphibia have shown that graded Bmp signalling activity regulates dorsal-to-ventral (DV) patterning of the gastrula embryo. In the ectoderm, it is thought that high levels of Bmp activity promote epidermal development ventrally, whereas secreted Bmp antagonists emanating from the organiser induce neural tissue dorsally. However, in zebrafish embryos, the domain of cells destined to contribute to the spinal cord extends all the way to the ventral side of the gastrula, a long way from the organiser. We show that in vegetal (trunk and tail) regions of the zebrafish gastrula, neural specification is initiated at all DV positions of the ectoderm in a manner that is unaffected by levels of Bmp activity and independent of organiser-derived signals. Instead, we find that Fgf activity is required to induce vegetal prospective neural markers and can do so without suppressing Bmp activity. We further show that Bmp signalling does occur within the vegetal prospective neural domain and that Bmp activity promotes the adoption of caudal fate by this tissue.


Nature Neuroscience | 2010

Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway

Coralie Fassier; James A. Hutt; Steffen Scholpp; Andrew Lumsden; Bruno Giros; Fatiha Nothias; Sylvie Schneider-Maunoury; Corinne Houart; Jamilé Hazan

To better understand hereditary spastic paraplegia (HSP), we characterized the function of atlastin, a protein that is frequently involved in juvenile forms of HSP, by analyzing loss- and gain-of-function phenotypes in the developing zebrafish. We found that knockdown of the gene for atlastin (atl1) caused a severe decrease in larval mobility that was preceded by abnormal architecture of spinal motor axons and was associated with a substantial upregulation of the bone morphogenetic protein (BMP) signaling pathway. Overexpression analyses confirmed that atlastin inhibits BMP signaling. In primary cultures of zebrafish spinal neurons, Atlastin partially colocalized with type I BMP receptors in late endosomes distributed along neurites, which suggests that atlastin may regulate BMP receptor trafficking. Finally, genetic or pharmacological inhibition of BMP signaling was sufficient to rescue the loss of mobility and spinal motor axon defects of atl1 morphants, emphasizing the importance of fine-tuning the balance of BMP signaling for vertebrate motor axon architecture and stability.


Development | 2006

Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3

Christian Stigloher; Jovica Ninkovic; Mary Laplante; Andrea Geling; Birgit Tannhäuser; Stefanie Topp; Hiroshi Kikuta; Thomas S. Becker; Corinne Houart; Laure Bally-Cuif

Anteroposterior patterning of the vertebrate forebrain during gastrulation involves graded Wnt signaling, which segregates anterior fields (telencephalon and eye) from the diencephalon. How the telencephalic and retinal primordia are subsequently subdivided remains largely unknown. We demonstrate that at late gastrulation the Paired-like homeodomain transcription factor Rx3 biases cell specification choices towards the retinal fate within a population of bipotential precursors of the anterior forebrain: direct cell tracing demonstrates that retinal precursors acquire a telencephalic fate in embryos homozygous for the rx3-null allele ckhne2611, characterized by an enlarged telencephalon and a lack of eyes. Chimera analyses further indicate that this function of Rx3 is cell autonomous. Transfating of the eye field in the absence of Rx3 function correlates with a substantial posterior expansion of expression of the Wnt antagonist Tlc and the winged-helix transcription factor Foxg1. These results suggest that the process segregating the telencephalic and eye fields is isolated from diencephalic patterning, and is mediated by Rx3.


Development | 2005

Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones

William Norton; M Mangoli; Zsolt Lele; H M Pogoda; B Diamond; S Mercurio; Claire Russell; Hiroki Teraoka; H L Stickney; Gerd-Jörg Rauch; Carl-Philipp Heisenberg; Corinne Houart; Thomas F. Schilling; H G Frohnhoefer; S Rastegar; Carl J. Neumann; R M Gardiner; Uwe Strähle; Robert Geisler; M Rees; William S. Talbot; Stephen W. Wilson

In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphé nucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.


Development | 2007

Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon

Steffen Scholpp; Isabelle Foucher; Nicole Staudt; Daniela Peukert; Andrew Lumsden; Corinne Houart

The thalamic complex is the major sensory relay station in the vertebrate brain and comprises three developmental subregions: the prethalamus, the thalamus and an intervening boundary region - the zona limitans intrathalamica (ZLI). Shh signalling from the ZLI confers regional identity of the flanking subregions of the ZLI, making it an important local signalling centre for regional differentiation of the diencephalon. However, our understanding of the mechanisms responsible for positioning the ZLI along the neural axis is poor. Here we show that, before ZLI formation, both Otx1l and Otx2 (collectively referred to as Otx1l/2) are expressed in spatially restricted domains. Formation of both the ZLI and the Irx1b-positive thalamus require Otx1l/2; embryos impaired in Otx1l/2 function fail to form these areas, and, instead, the adjacent pretectum and, to a lesser extent, the prethalamus expand into the mis-specified area. Conditional expression of Otx2 in these morphant embryos cell-autonomously rescues the formation of the ZLI at its correct location. Furthermore, absence of thalamic Irx1b expression, in the presence of normal Otx1l/2 function, leads to a substantial caudal broadening of the ZLI by transformation of thalamic precursors. We therefore propose that the ZLI is induced within the competence area established by Otx1l/2, and is posteriorly restricted by Irx1b.

Collaboration


Dive into the Corinne Houart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Foucher

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge