Carl J. Walters
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carl J. Walters.
Ecology | 1990
Carl J. Walters; C. S. Holling
Even unmanaged ecosystems are characterized by combinations of stability and instability and by unexpected shifts in behavior from both internal and external causes. That is even more true of ecosystems managed for the production of food or fiber. Data are sparse, knowledge of processes limited, and the act of management changes the system being managed. Surprise and change is inevitable. Here we review methods to develop, screen, and evaluate alternatives in a process where management itself becomes partner with science by designing probes that produce updated understanding as well as economic product. See full-text article at JSTOR
Reviews in Fish Biology and Fisheries | 1997
Carl J. Walters; Villy Christensen; Daniel Pauly
The linear equations that describe trophic fluxes in mass-balance, equilibrium assessments of ecosystems (such as in the ECOPATH approach) can be re-expressed as differential equations defining trophic interactions as dynamic relationships varying with biomasses and harvest regimes. Time patterns of biomass predicted by these differential equations, and equilibrium system responses under different exploitation regimes, are found by setting the differential equations equal to zero and solving for biomasses at different levels of fishing mortality. Incorporation of our approach as the ECOSIM routine into the well-documented ECOPATH software will enable a wide range of potential users to conduct fisheries policy analyses that explicitly account for ecosystem trophic interactions, without requiring the users to engage in complex modelling or information gathering much beyond that required for ECOPATH. While the ECOSIM predictions can be expected to fail under fishing regimes very different from those leading to the ECOPATH input data, ECOSIM will at least indicate likely directions of biomass change in various trophic groups under incremental experimental policies aimed at improving overall ecosystem management. That is, ECOSIM can be a valuable tool for design of ecosystem-scale adaptive management experiments
Conservation Ecology | 1997
Carl J. Walters
Many case studies in adaptive-management planning for riparian ecosystems have failed to produce useful models for policy comparison or good experimental management plans for resolving key uncertainties. Modeling efforts have been plagued by difficulties in representation of cross-scale effects (from rapid hydrologic change to long-term ecological response), lack of data on key processes that are difficult to study, and confounding of factor effects in validation data. Experimental policies have been seen as too costly or risky, particularly in relation to monitoring costs and risk to sensitive species. Research and management stakeholders have shown deplorable self-interest, seeing adaptive-policy development as a threat to existing research programs and management regimes, rather than as an opportunity for improvement. Proposals for experimental management regimes have exposed and highlighted some really fundamental conflicts in ecological values, particularly in cases in which endangered species have prospered under historical management and would be threatened by ecosystem restoration efforts. There is much potential for adaptive management in the future, if we can find ways around these barriers.
Fisheries | 2002
John R. Post; Michael G. Sullivan; Sean P. Cox; Nigel P. Lester; Carl J. Walters; Eric A. Parkinson; Andrew J. Paul; Leyland Jackson; Brian J. Shuter
Abstract Fishing for recreation is a popular activity in many parts of the world and this activity has led to the development of a sector of substantial social and economic value worldwide. The maintenance of this sector depends on the ability of aquatic ecosystems to provide fishery harvest. We are currently witnessing the collapse of many commercial marine fisheries due to over-exploitation. Recreational fisheries are typically viewed as different from commercial fisheries in that they are self-sustaining and not controlled by the social and economic forces of the open market that have driven many commercial fisheries to collapse. Here we reject the view that recreational and commercial fisheries are inherently different and demonstrate several mechanisms that can lead to the collapse of recreational fisheries. Data from four high profile Canadian recreational fisheries show dramatic declines over the last several decades yet these declines have gone largely unnoticed by fishery scientists, managers, an...
Ecosystems | 1999
Carl J. Walters; Daniel Pauly; Villy Christensen
ABSTRACT Growing disillusion with the predictive capability of single species fisheries assessment methods and the realization that the management approaches they imply will always fail to protect bycatch species has led to growing interest in the potential of marine protected areas (MPAs) as a tool for protecting such species and allowing for rebuilding populations of target species and damaged habitat. Ecospace is a spatially explicit model for policy evaluation that allows for considering the impact of MPAs in an ecosystem (that is, trophic) context, and that relies on the Ecopath mass-balance approach for most of its parameterization. Additional inputs are movement rates used to compute exchanges between grid cells, estimates of the importance of trophic interactions (top-down vs bottom up control), and habitat preferences for each of the functional groups included in the model. An application example, including the effect of an MPA, and validation against trawl survey data is presented in the form of a color map illustrating Ecospace predictions of biomass patterns on the shelf of Brunei Darussalam, Southeast Asia. A key general prediction of Ecospace is spatial “cascade” effects, wherein prey densities are low where predators are abundant, for example, in protected areas or areas where fishing costs are high. Ecospace also shows that the potential benefits of local protection can be easily negated by high movement rates, and especially by concentration of fishing effort at the edge of the MPAs, where cascade effects generate prey gradients that attract predators out of the protected areas. Despite various limitations (for example, no explicit consideration of seasonal changes or directed migration), the outward simplicity of Ecospace and the information-rich graphs it generates, coupled with the increasingly global availability of the required Ecopath files, will likely ensure a wide use for this approach, both for generating hypotheses about ecosystem function and evaluating policy choices.
Ecosystems | 2000
Carl J. Walters; Daniel Pauly; Villy Christensen; James F. Kitchell
ABSTRACT EcoSim II uses results from the Ecopath procedure for trophic mass-balance analysis to define biomass dynamics models for predicting temporal change in exploited ecosystems. Key populations can be represented in further detail by using delay-difference models to account for both biomass and numbers dynamics. A major problem revealed by linking the population and biomass dynamics models is in representation of population responses to changes in food supply; simple proportional growth and reproductive responses lead to unrealistic predictions of changes in mean body size with changes in fishing mortality. EcoSim II allows users to specify life history mechanisms to avoid such unrealistic predictions: animals may translate changes in feeding rate into changes in reproductive rather than growth rates, or they may translate changes in food availability into changes in foraging time that in turn affects predation risk. These options, along with model relationships for limits on prey availability caused by predation avoidance tactics, tend to cause strong compensatory responses in modeled populations. It is likely that such compensatory responses are responsible for our inability to find obvious correlations between interacting trophic components in fisheries time-series data. But Ecosim II does not just predict strong compensatory responses: it also suggests that large piscivores may be vulnerable to delayed recruitment collapses caused by increases in prey species that are in turn competitors/predators of juvenile piscivores.
Ecology | 1996
Peter A. Abrams; Carl J. Walters
In many predator—prey systems, prey individuals make transitions between vulnerable and invulnerable states or locations. The invulnerable (or less vulnerable) class can be individuals occupying a spatial refuge or those engaged in activities that greatly reduce the risk of predation. Simple models are used to show that transitions between such classes have the following consequences: (1) equilibrium prey density increases as the conditions of prey growth are improved and (2) enrichment often cannot destabilize systems with stable equilibrium densities and many stabilize systems that are undergoing limit cycle oscillations. Transitions to and from invulnerable states therefore represent a possible explanation for the lack of examples of destabilization via fertilization (the paradox of enrichment) in nature. Other theoretical reasons for the apparent absence of the paradox or enrichment are reviewed, and methods of distinguishing the different mechanism are discussed.
Ecology | 2003
Lawrence M. Dill; Michael R. Heithaus; Carl J. Walters
The importance of density-mediated indirect effects (e.g., keystone predators) in marine communities has been widely recognized. Behaviorally mediated indirect interactions (BMIIs) may be equally important in marine systems, but have received relatively little attention. BMIIs occur when a change in an “initiator” species causes a behavioral shift in a “transmitter” species that, in turn, affects a “receiver” species. BMIIs between initiator and receiver species can be described by the ecological relationships between initiator and transmitter, and between transmitter and receiver (i.e., predator and prey, competitors, or no relationship), and the nature of the indirect effect on the receiver (i.e., positive or negative). We review published examples of BMIIs in marine communities, showing that BMIIs may create, enhance, ameliorate, or even reverse the sign of the direct interactions between species. Models that only include direct interactions or density-mediated indirect ones cannot predict some of thes...
AMBIO: A Journal of the Human Environment | 2007
Carl J. Walters
Abstract Adaptive management has been widely recommended as a way to deal with extreme uncertainty in natural resource and environmental decision making. The core concept in adaptive management is that policy choices should be treated as deliberate, large-scale experiments; hence, policy choice should be treated at least partly as a problem of scientific experimental design. There have now been upwards of 100 case studies where attempts were made to apply adaptive management to issues ranging from restoration of endangered desert fish species to protection of the Great Barrier Reef. Most of these cases have been failures in the sense that no experimental management program was ever implemented, and there have been serious problems with monitoring programs in the handful of cases where an experimental plan was implemented. Most of the failures can be traced to three main institutional problems: i) lack of management resources for the expanded monitoring needed to carry out large-scale experiments; ii) unwillingness by decision makers to admit and embrace uncertainty in making policy choices; and iii) lack of leadership in the form of individuals willing to do all the hard work needed to plan and implement new and complex management programs.
Ecosystems | 2002
James F. Kitchell; Timothy E. Essington; Christofer H. Boggs; Daniel E. Schindler; Carl J. Walters
The increased exploitation of pelagic sharks by longline fisheries raised questions about changes in the food webs that include sharks as apex predators. We used a version of Ecopath/Ecosim models to evaluate changes in trophic interactions due to shark exploitation in the Central North Pacific. Fisheries targeted on blue sharks tend to produce compensatory responses that favor other shark species and billfishes, but they have only modest effects on the majority of food web components. Modest levels of intraguild predation (adult sharks that eat juvenile sharks) produce strong, nonlinear responses in shark populations. In general, analysis of the Central North Pacific model reveals that sharks are not keystone predators, but that increases in longline fisheries can have profound effects on the food webs that support sharks.