Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Pauly is active.

Publication


Featured researches published by Daniel Pauly.


Science | 2010

Global Biodiversity: Indicators of Recent Declines

Stuart H. M. Butchart; Matt Walpole; Ben Collen; Arco J. van Strien; Jörn P. W. Scharlemann; Rosamunde E.A. Almond; Jonathan E. M. Baillie; Bastian Bomhard; Ciaire Brown; John F. Bruno; Kent E. Carpenter; Geneviève M. Carr; Janice Chanson; Anna M. Chenery; Jorge Csirke; Nicholas Davidson; Frank Dentener; Matt Foster; Alessandro Galli; James N. Galloway; Piero Genovesi; Richard D. Gregory; Marc Hockings; Valerie Kapos; Jean-Francois Lamarque; Fiona Leverington; J Loh; Melodie A. McGeoch; Louise McRae; Anahit Minasyan

Global Biodiversity Target Missed In 2002, the Convention on Biological Diversity (CBD) committed to a significant reduction in the rate of biodiversity loss by 2010. There has been widespread conjecture that this target has not been met. Butchart et al. (p. 1164, published online 29 April) analyzed over 30 indicators developed within the CBDs framework. These indicators include the condition or state of biodiversity (e.g., species numbers, population sizes), the pressures on biodiversity (e.g., deforestation), and the responses to maintain biodiversity (e.g., protected areas) and were assessed between about 1970 and 2005. Taken together, the results confirm that we have indeed failed to meet the 2010 targets. An analysis of 30 indicators shows that the Convention on Biological Diversity’s 2010 targets have not been met. In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species’ population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.


Ecological Modelling | 1992

ECOPATH II — a software for balancing steady-state ecosystem models and calculating network characteristics☆

Villy Christensen; Daniel Pauly

Abstract The ECOPATH II microcomputer software is presented as an approach for balancing ecosystem models. It includes (i) routines for balancing the flow in a steady-state ecosystem from estimation of a missing parameter for all groups in the system, (ii) routines for estimating network flow indices, and (iii) miscellaneous routines for deriving additional indices such as food selection indices and omnivory indices. The use of ECOPATH II is exemplified through presentation of a model of the Schlei Fjord ecosystem (Western Baltic).


Reviews in Fish Biology and Fisheries | 1997

Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments

Carl J. Walters; Villy Christensen; Daniel Pauly

The linear equations that describe trophic fluxes in mass-balance, equilibrium assessments of ecosystems (such as in the ECOPATH approach) can be re-expressed as differential equations defining trophic interactions as dynamic relationships varying with biomasses and harvest regimes. Time patterns of biomass predicted by these differential equations, and equilibrium system responses under different exploitation regimes, are found by setting the differential equations equal to zero and solving for biomasses at different levels of fishing mortality. Incorporation of our approach as the ECOSIM routine into the well-documented ECOPATH software will enable a wide range of potential users to conduct fisheries policy analyses that explicitly account for ecosystem trophic interactions, without requiring the users to engage in complex modelling or information gathering much beyond that required for ECOPATH. While the ECOSIM predictions can be expected to fail under fishing regimes very different from those leading to the ECOPATH input data, ECOSIM will at least indicate likely directions of biomass change in various trophic groups under incremental experimental policies aimed at improving overall ecosystem management. That is, ECOSIM can be a valuable tool for design of ecosystem-scale adaptive management experiments


Nature | 2001

Systematic distortions in world fisheries catch trends

Reg Watson; Daniel Pauly

Over 75% of the world marine fisheries catch (over 80 million tonnes per year) is sold on international markets, in contrast to other food commodities (such as rice). At present, only one institution, the Food and Agriculture Organization of the United Nations (FAO) maintains global fisheries statistics. As an intergovernmental organization, however, FAO must generally rely on the statistics provided by member countries, even if it is doubtful that these correspond to reality. Here we show that misreporting by countries with large fisheries, combined with the large and widely fluctuating catch of species such as the Peruvian anchoveta, can cause globally spurious trends. Such trends influence unwise investment decisions by firms in the fishing sector and by banks, and prevent the effective management of international fisheries.


Philosophical Transactions of the Royal Society B | 2005

Global trends in world fisheries: impacts on marine ecosystems and food security.

Daniel Pauly; Reg Watson; Jackie Alder

This contribution, which reviews some broad trends in human history and in the history of fishing, argues that sustainability, however defined, rarely if ever occurred as a result of an explicit policy, but as result of our inability to access a major part of exploited stocks. With the development of industrial fishing, and the resulting invasion of the refuges previously provided by distance and depth, our interactions with fisheries resources have come to resemble the wars of extermination that newly arrived hunters conducted 40 000–50 000 years ago in Australia, and 11 000–13 000 years ago against large terrestrial mammals arrived in North America. These broad trends are documented here through a map of change in fish sizes, which displays characteristic declines, first in the nearshore waters of industrialized countries of the Northern Hemisphere, then spread offshore and to the Southern Hemisphere. This geographical extension met its natural limit in the late 1980s, when the catches from newly accessed stocks ceased to compensate for the collapse in areas accessed earlier, hence leading to a gradual decline of global landing. These trends affect developing countries more than the developed world, which have been able to meet the shortfall by increasing imports from developing countries. These trends, however, together with the rapid growth of farming of carnivorous fishes, which consumes other fishes suited for human consumption, have led to serious food security issues. This promotes urgency to the implementation of the remedies traditionally proposed to alleviate overfishing (reduction of overcapacity, enforcement of conservative total allowable catches, etc.), and to the implementation of non–conventional approaches, notably the re–establishment of the refuges (also known as marine reserves), which made possible the apparent sustainability of pre–industrial fisheries.


Nature | 2012

An index to assess the health and benefits of the global ocean

Benjamin S. Halpern; Catherine Longo; Darren Hardy; Karen L. McLeod; Jameal F. Samhouri; Steven K. Katona; Kristin M. Kleisner; Sarah E. Lester; Jennifer K. O’Leary; Marla Ranelletti; Andrew A. Rosenberg; Courtney Scarborough; Elizabeth R. Selig; Benjamin D. Best; Daniel R. Brumbaugh; F. Stuart Chapin; Larry B. Crowder; Kendra L. Daly; Scott C. Doney; Cristiane T. Elfes; Michael J. Fogarty; Steven D. Gaines; Kelsey I. Jacobsen; Leah Bunce Karrer; Heather M. Leslie; Elizabeth Neeley; Daniel Pauly; Stephen Polasky; Bud Ris; Kevin St. Martin

The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36–86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.


Oryx | 2008

Assessing progress towards global marine protection targets: shortfalls in information and action

Louisa Wood; Lucy Fish; Josh Laughren; Daniel Pauly

Current global marine protection targets aim to protect 1030% of marine habitats within the next 3 - -5 years. However, these targets were adopted without prior assessment of their achievability. Moreover, ability to moni- tor progress towards such targets has been constrained by a lack of robust data on marine protected areas. Here we present the results of the first explicitly marine-focused, global assessment of protected areas in relation to global marine protection targets. Approximately 2.35 million km 2 , 0.65% of the worlds oceans and 1.6% of the total marine area within Exclusive Economic Zones, are currently pro- tected. Only 0.08% of the worlds oceans, and 0.2% of the total marine area under national jurisdiction is no-take. The global distribution of protected areas is both uneven and unrepresentative at multiple scales, and only half of the worlds marine protected areas are part of a coherent network. Since 1984 the spatial extent of marine area pro- tected globally has grown at an annual rate of 4.6%, at which even the most modest target is unlikely to be met for at least several decades rather than within the coming decade. These results validate concerns over the relevance and utility of broad conservation targets. However, given the low level of protection for marine ecosystems, a more immediate global concern is the need for a rapid increase in marine protected area coverage. In this case, the process of comparing targets to their expected achievement dates may help to mobilize support for the policy shifts and increased resources needed to improve the current level of marine protection.


Ecosystems | 1999

Ecospace: Prediction of Mesoscale Spatial Patterns in Trophic Relationships of Exploited Ecosystems, with Emphasis on the Impacts of Marine Protected Areas

Carl J. Walters; Daniel Pauly; Villy Christensen

ABSTRACT Growing disillusion with the predictive capability of single species fisheries assessment methods and the realization that the management approaches they imply will always fail to protect bycatch species has led to growing interest in the potential of marine protected areas (MPAs) as a tool for protecting such species and allowing for rebuilding populations of target species and damaged habitat. Ecospace is a spatially explicit model for policy evaluation that allows for considering the impact of MPAs in an ecosystem (that is, trophic) context, and that relies on the Ecopath mass-balance approach for most of its parameterization. Additional inputs are movement rates used to compute exchanges between grid cells, estimates of the importance of trophic interactions (top-down vs bottom up control), and habitat preferences for each of the functional groups included in the model. An application example, including the effect of an MPA, and validation against trawl survey data is presented in the form of a color map illustrating Ecospace predictions of biomass patterns on the shelf of Brunei Darussalam, Southeast Asia. A key general prediction of Ecospace is spatial “cascade” effects, wherein prey densities are low where predators are abundant, for example, in protected areas or areas where fishing costs are high. Ecospace also shows that the potential benefits of local protection can be easily negated by high movement rates, and especially by concentration of fishing effort at the edge of the MPAs, where cascade effects generate prey gradients that attract predators out of the protected areas. Despite various limitations (for example, no explicit consideration of seasonal changes or directed migration), the outward simplicity of Ecospace and the information-rich graphs it generates, coupled with the increasingly global availability of the required Ecopath files, will likely ensure a wide use for this approach, both for generating hypotheses about ecosystem function and evaluating policy choices.


Nature | 2013

Signature of ocean warming in global fisheries catch

William W. L. Cheung; Reg Watson; Daniel Pauly

Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by ‘tropicalization’ of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world’s coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.


Philosophical Transactions of the Royal Society B | 2005

Background and interpretation of the 'Marine Trophic Index' as a measure of biodiversity.

Daniel Pauly; Reg Watson

Since the demonstration, in 1998, of the phenomenon now widely known as ‘fishing down marine food webs’, and the publication of a critical rejoinder by Food and Agricultural Organization (FAO) staff, a number of studies have been conducted in different parts of the world, based on more detailed data than the global FAO fisheries statistics originally used, which established the validity and ubiquity of this phenomenon. In this contribution, we briefly review how, rather than being an artefact of biased data, this phenomenon was in fact largely masked by such data, and is in fact more widespread than was initially anticipated. This is made visible here by comparing two global maps of trophic level (TL) changes from the early 1950s to the present. The first presents the 50-year difference of the grand mean TL values originally used to demonstrate the fishing down effect, while the second is based on means above a cut-off TL (here set at 3.25), thus eliminating the highly variable and abundant small pelagic fishes caught throughout the world. Based on this, we suggest that using mean TL as ‘Marine Trophic Index’ (MTI), as endorsed by the Convention on Biological Diversity , always be done with an explicitly stated cut-off TL (i.e. cutMTI), chosen (as is the case with our proposed value of 3.25) to emphasize changes in the relative abundance of the more threatened, high-TL fishes. We also point out the need to improve the taxonomic resolution, completeness and accuracy of the national and international fisheries catch data series upon which the cutMTI is to be based.

Collaboration


Dive into the Daniel Pauly's collaboration.

Top Co-Authors

Avatar

Dirk Zeller

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Villy Christensen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Reg Watson

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Vicky W. Y. Lam

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

William W. L. Cheung

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rainer Froese

Leibniz Institute of Marine Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Rashid Sumaila

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ussif Rashid Sumaila

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dyhia Belhabib

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge