Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl-Johan Haster is active.

Publication


Featured researches published by Carl-Johan Haster.


The Astrophysical Journal | 2014

The first two years of electromagnetic follow-up with advanced LIGO and Virgo

L. P. Singer; Lawrence Price; B. Farr; A. L. Urban; C. Pankow; Salvatore Vitale; J. Veitch; W. M. Farr; Chad Hanna; K. C. Cannon; Tom Downes; P. B. Graff; Carl-Johan Haster; Ilya Mandel; T. L. Sidery; Alberto Vecchio

We anticipate the first direct detections of gravitational waves (GWs) with Advanced LIGO and Virgo later this decade. Though this groundbreaking technical achievement will be its own reward, a still greater prize could be observations of compact binary mergers in both gravitational and electromagnetic channels simultaneously. During Advanced LIGO and Virgos first two years of operation, 2015 through 2016, we expect the global GW detector array to improve in sensitivity and livetime and expand from two to three detectors. We model the detection rate and the sky localization accuracy for binary neutron star (BNS) mergers across this transition. We have analyzed a large, astrophysically motivated source population using real-time detection and sky localization codes and higher-latency parameter estimation codes that have been expressly built for operation in the Advanced LIGO/Virgo era. We show that for most BNS events, the rapid sky localization, available about a minute after a detection, is as accurate as the full parameter estimation. We demonstrate that Advanced Virgo will play an important role in sky localization, even though it is anticipated to come online with only one-third as much sensitivity as the Advanced LIGO detectors. We find that the median 90% confidence region shrinks from ~500 deg^2 in 2015 to ~200 deg^2 in 2016. A few distinct scenarios for the first LIGO/Virgo detections emerge from our simulations.


Physical Review D | 2015

Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

J. Veitch; V. Raymond; B. Farr; W. M. Farr; P. B. Graff; Salvatore Vitale; Ben Aylott; K. Blackburn; N. Christensen; M. W. Coughlin; Walter Del Pozzo; Farhan Feroz; Jonathan R. Gair; Carl-Johan Haster; Vicky Kalogera; T. B. Littenberg; Ilya Mandel; R. O'Shaughnessy; M. Pitkin; C. Rodriguez; Christian Röver; T. L. Sidery; R. J. E. Smith; Marc van der Sluys; Alberto Vecchio; W. D. Vousden; L. Wade

The Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star–black hole binary and a binary black hole, where we show a cross comparison of results obtained using three independent sampling algorithms. These systems were analyzed with nonspinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analyzing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.


The Astrophysical Journal | 2015

PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA

C. P. L. Berry; Ilya Mandel; H. Middleton; L. P. Singer; A. L. Urban; Alberto Vecchio; Salvatore Vitale; K. C. Cannon; B. Farr; W. M. Farr; P. B. Graff; Chad Hanna; Carl-Johan Haster; S. R. P. Mohapatra; C. Pankow; Lawrence Price; T. L. Sidery; J. Veitch

Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10^(-3) M_☉. The median 90% (50%) credible region for sky localization is ~ 600 deg^2 (~150 deg^2), with 3% (30%) of detected events localized within 100 deg^2. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.


Monthly Notices of the Royal Astronomical Society | 2015

Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers

Ilya Mandel; Carl-Johan Haster; Michal Dominik; Krzysztof Belczynski

We analyze the distinguishability of populations of coalescing binary neutron stars, neutron-star black-hole binaries, and binary black holes, whose gravitational-wave signatures are expected to be observed by the advanced network of ground-based interferometers LIGO and Virgo. We consider population-synthesis predictions for plausible merging binary distributions in mass space, along with measurement accuracy estimates from the main gravitational-wave parameter-estimation pipeline. We find that for our model compact-object binary mass distribution, we can always distinguish binary neutron stars and black-hole--neutron-star binaries, but not necessarily black-hole--neutron-star binaries and binary black holes; however, with a few tens of detections, we can accurately identify the three subpopulations and measure their respective rates.


The Astrophysical Journal | 2016

Parameter estimation on gravitational waves from neutron-star binaries with spinning components

B. Farr; C. P. L. Berry; W. M. Farr; Carl-Johan Haster; H. Middleton; K. C. Cannon; P. B. Graff; Chad Hanna; Ilya Mandel; C. Pankow; Lawrence Price; T. L. Sidery; L. P. Singer; A. L. Urban; Alberto Vecchio; J. Veitch; Salvatore Vitale

Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses


Physical Review D | 2014

Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

J. Veitch; V. Raymond; B. Farr; W. M. Farr; P. B. Graff; Salvatore Vitale; Ben Aylott; K. Blackburn; N. Christensen; M. W. Coughlin; Walter Del Pozzo; Farhan Feroz; Jonathan R. Gair; Carl-Johan Haster; Vicky Kalogera; T. B. Littenberg; Ilya Mandel; R. O'Shaughnessy; M. Pitkin; C. Rodriguez; Christian Röver; T. L. Sidery; R. J. E. Smith; Marc van der Sluys; Alberto Vecchio; W. D. Vousden; L. Wade

1.2~mathrm{M}_odot


Physical Review D | 2016

Fast and accurate inference on gravitational waves from precessing compact binaries

R. J. E. Smith; Scott E. Field; K. Blackburn; Carl-Johan Haster; M. Pürrer; V. Raymond; P. Schmidt

--


Monthly Notices of the Royal Astronomical Society | 2016

Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes

Carl-Johan Haster; Zhilu Wang; C. P. L. Berry; S. P. Stevenson; J. Veitch; Ilya Mandel

1.6~mathrm{M}_odot


Physical Review Letters | 2017

Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences

Salvatore Vitale; Davide Gerosa; Carl-Johan Haster; Katerina Chatziioannou; Aaron Zimmerman

and spins of less than


Physical Review D | 2018

Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method

J. Meidam; Ka Wa Tsang; Janna M Goldstein; M. Agathos; Archisman Ghosh; Carl-Johan Haster; V. Raymond; Anuradha Samajdar; P. Schmidt; R. J. E. Smith; K. Blackburn; Walter Del Pozzo; Scott E. Field; Tjonnie Li; M. Pürrer; Chris Van Den Broeck; J. Veitch; Salvatore Vitale

0.05

Collaboration


Dive into the Carl-Johan Haster's collaboration.

Top Co-Authors

Avatar

Salvatore Vitale

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ilya Mandel

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

J. Veitch

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Aaron Zimmerman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. Farr

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. L. Sidery

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

W. M. Farr

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Pankow

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge