Carl W. Davis
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carl W. Davis.
Journal of Virology | 2006
Carl W. Davis; Hai-Yen Nguyen; Sheri L. Hanna; Melissa D. Sánchez; Robert W. Doms; Theodore C. Pierson
ABSTRACT The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Anita K. McElroy; Rama Akondy; Carl W. Davis; Ali H. Ellebedy; Aneesh K. Mehta; Colleen S. Kraft; G. Marshall Lyon; Bruce S. Ribner; Jay B. Varkey; John Sidney; Alessandro Sette; Shelley Campbell; Ute Ströher; Inger K. Damon; Stuart T. Nichol; Christina F. Spiropoulou; Rafi Ahmed
Significance In 2014, Ebola virus became a household term. The ongoing outbreak in West Africa is the largest Ebola virus outbreak ever recorded, with over 20,000 cases and over 8,000 deaths to date. Very little is known about the human cellular immune response to Ebola virus infection, and this lack of knowledge has hindered development of effective therapies and vaccines. In this study, we characterize the human immune response to Ebola virus infection in four patients. We define the kinetics of T- and B-cell activation, and determine which viral proteins are targets of the Ebola virus-specific T-cell response in humans. Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10–50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1–2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients’ discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Ali H. Ellebedy; Florian Krammer; Gui-Mei Li; Matthew S. Miller; Christopher Chiu; Jens Wrammert; Cathy Y. Chang; Carl W. Davis; Megan McCausland; Rivka Elbein; Srilatha Edupuganti; Paul Spearman; Sarah F. Andrews; Patrick C. Wilson; Adolfo García-Sastre; Mark J. Mulligan; Aneesh K. Mehta; Peter Palese; Rafi Ahmed
Significance Vaccination is the most effective means of attaining protection against influenza viruses. However, the constantly evolving nature of influenza viruses enables them to escape preexisting immune surveillance, and thus thwarts public health efforts to control influenza annual epidemics and occasional pandemics. One solution is to elicit antibodies directed against highly conserved epitopes, such as those within the stem region of influenza HA, the principal target of virus-neutralizing antibody responses. This study shows that annual influenza vaccines induce antibody responses that are largely directed against the highly variable HA head region. In contrast, heterologous immunization with HA derived from influenza strains that are currently not circulating in humans (e.g. H5N1) can substantially increase HA stem-specific responses. The emergence of pandemic influenza viruses poses a major public health threat. Therefore, there is a need for a vaccine that can induce broadly cross-reactive antibodies that protect against seasonal as well as pandemic influenza strains. Human broadly neutralizing antibodies directed against highly conserved epitopes in the stem region of influenza virus HA have been recently characterized. However, it remains unknown what the baseline levels are of antibodies and memory B cells that are directed against these conserved epitopes. More importantly, it is also not known to what extent anti-HA stem B-cell responses get boosted in humans after seasonal influenza vaccination. In this study, we have addressed these two outstanding questions. Our data show that: (i) antibodies and memory B cells directed against the conserved HA stem region are prevalent in humans, but their levels are much lower than B-cell responses directed to variable epitopes in the HA head; (ii) current seasonal influenza vaccines are efficient in inducing B-cell responses to the variable HA head region but they fail to boost responses to the conserved HA stem region; and (iii) in striking contrast, immunization of humans with the avian influenza virus H5N1 induced broadly cross-reactive HA stem-specific antibodies. Taken together, our findings provide a potential vaccination strategy where heterologous influenza immunization could be used for increasing the levels of broadly neutralizing antibodies and for priming the human population to respond quickly to emerging pandemic influenza threats.
Journal of Biological Chemistry | 2006
Carl W. Davis; Lisa M. Mattei; Hai-Yen Nguyen; Camilo Ansarah-Sobrinho; Robert W. Doms; Theodore C. Pierson
Mammalian cell-derived West Nile virus preferentially infects cells expressing the C-type lectin CD209L (dendritic cellspecific ICAM-3 grabbing nonintegrin-related protein; liver- and lymph node-specific ICAM-3 grabbing nonintegrin) but not cells expressing CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). In contrast, Dengue virus infection is enhanced in cells expressing either attachment factor. The West Nile virus envelope (E) protein contains a single N-linked glycosylation site at residue 154, whereas Dengue virus E contains sites at residues 153 and 67. We introduced a glycosylation site at position 67 into West Nile virus E. Reporter virus particles pseudotyped with this E protein infected cells using either CD209 or CD209L. We also introduced glycosylation sites at several novel positions. All sites allowed CD209L-mediated infection, but only a subset promoted CD209 use. As seen for other viruses, mannose-rich glycans on West Nile virus were required for its interactions with CD209. Surprisingly, however, mannose-rich glycans were not required for CD209L-mediated infection. Complex glycans, particularly N-acetylglucosamine-terminated structures, were able to mediate reporter virus particle interactions with CD209L. We propose that CD209L recognizes glycosylated flaviviruses with broad specificity, whereas CD209 is selective for flaviviruses bearing mannose-rich glycans. The location of the N-linked glycosylation sites on a virion determines the types of glycans incorporated, thus controlling viral tropism for CD209-expressing cells.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Tuoqi Wu; Andreas Wieland; Koichi Araki; Carl W. Davis; Lilin Ye; J. Scott Hale; Rafi Ahmed
MicroRNAs are important regulators of various developmental and physiological processes. However, their roles in the CD8+ T-cell response are not well understood. Using an acute viral infection model, we show that microRNAs of the miR-17-92 cluster are strongly induced after T-cell activation, down-regulated after clonal expansion, and further silenced during memory development. miR-17-92 promotes cell-cycle progression of effector CD8+ T cells, and its expression is critical to the rapid expansion of these cells. However, excessive miR-17-92 expression enhances mammalian target of rapamycin (mTOR) signaling and strongly skews the differentiation toward short-lived terminal effector cells. Failure to down-regulate miR-17-92 leads to a gradual loss of memory cells and defective central memory cell development. Therefore, our results reveal a temporal expression pattern of miR-17-92 by antigen-specific CD8+ T cells during viral infection, the precise control of which is critical to the effector expansion and memory differentiation of CD8+ T cells.
Journal of Virology | 2013
Mohammed Ata Ur Rasheed; Donald R. Latner; Rachael D. Aubert; Tania Gourley; Rosanne Spolski; Carl W. Davis; William A. Langley; Sang Jun Ha; Lilin Ye; Surojit Sarkar; Vandana Kalia; Bogumila T. Konieczny; Warren J. Leonard; Rafi Ahmed
ABSTRACT Long-lived plasma cells that reside in the bone marrow constitutively produce antibody in the absence of antigen and are the cellular basis of durable humoral immunity. The generation of these long-lived plasma cells depends upon a series of highly orchestrated interactions between antigen-specific CD4 T cells and B cells and the formation of germinal centers (GCs). In this study, we have examined the role of the cytokine interleukin-21 (IL-21) in regulating humoral immunity during acute viral infections. Using IL-21 receptor-deficient (IL-21R−/−) mice, we found that virus-specific CD4 T cells were generated after infection with lymphocytic choriomeningitis virus (LCMV) and that these CD4 T cells differentiated into T follicular helper (TFH)-like cells in the absence of IL-21 signaling. There was also no defect in the formation of GCs, although after day 15 these GCs disappeared faster in IL-21R−/− mice than in wild-type mice. Isotype switching and the initial LCMV-specific IgG response were normal in IL-21R−/− mice. However, these mice exhibited a profound defect in generating long-lived plasma cells and in sustaining antibody levels over time. Similar results were seen after infection of IL-21R−/− mice with vesicular stomatitis virus and influenza virus. Using chimeric mice containing wild-type or IL-21R−/− CD4 T cells and B cells, we showed that both B and CD4 T cells need IL-21 signaling for generating long-term humoral immunity. Taken together, our results highlight the importance of IL-21 in humoral immunity to viruses.
Cell | 2015
Taia T. Wang; Jad Maamary; Gene S. Tan; Stylianos Bournazos; Carl W. Davis; Florian Krammer; Sarah J. Schlesinger; Peter Palese; Rafi Ahmed; Jeffrey V. Ravetch
Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.
Journal of Immunology | 2012
Hye Suk Yoon; Christopher D. Scharer; Parimal Majumder; Carl W. Davis; Royce Butler; Wendy M. Zinzow-Kramer; Ioanna Skountzou; Dimitrios G. Koutsonanos; Rafi Ahmed; Jeremy M. Boss
CIITA and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly, but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when B lymphocyte-induced maturation protein-1 (Blimp-1), the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. Short hairpin RNA depletion of ZBTB32 in a plasma cell line resulted in re-expression of CIITA and I-A. Compared with conditional Blimp-1 knockout and wild-type B cells, B cells from ZBTB32/ROG-knockout mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression.
Nature | 2017
Ben Youngblood; J. Scott Hale; Haydn T. Kissick; Eunseon Ahn; Xiaojin Xu; Andreas Wieland; Koichi Araki; Erin E. West; Hazem E. Ghoneim; Yiping Fan; Pranay Dogra; Carl W. Davis; Bogumila T. Konieczny; Rustom Antia; Xiaodong Cheng; Rafi Ahmed
Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.
International Immunology | 2010
Benjamin Alan Youngblood; Carl W. Davis; Rafi Ahmed
Clonal expansion of virus-specific naive T cells during an acute viral infection results in the formation of memory CD8 T cells that provide the host with long-term protective immunity against the pathogen. Memory CD8 T cells display enhanced effector functions compared with their naive precursors, allowing them to respond more rapidly and effectively to antigen re-encounter. The enhanced functions of memory CD8 T cells are mediated by heritable changes in gene regulation. Expression of select transcription factors along with locus-specific epigenetic modifications are coupled to and are essential in the formation of memory-specific gene expression patterns. Here, we will review the changes in gene expression that accompany development of memory CD8 T cells and discuss chromatin modifications as a potential means for heritable propagation of these changes during homeostatic cell division of self-renewing memory CD8 T cells. Also, we will discuss therapies that manipulate heritable gene regulation as a potential mechanism to restore function to non-functional memory CD8 T cells to combat chronic viral infection.