Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla B. Green is active.

Publication


Featured researches published by Carla B. Green.


Annual Review of Neuroscience | 2012

Central and peripheral circadian clocks in mammals.

Jennifer A. Mohawk; Carla B. Green; Joseph S. Takahashi

The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.


Cell | 2008

The Meter of Metabolism

Carla B. Green; Joseph S. Takahashi; Joseph Bass

The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.


Trends in Cell Biology | 2014

Molecular Architecture of the Mammalian Circadian Clock

Carrie L. Partch; Carla B. Green; Joseph S. Takahashi

Circadian clocks coordinate physiology and behavior with the 24h solar day to provide temporal homeostasis with the external environment. The molecular clocks that drive these intrinsic rhythmic changes are based on interlocked transcription/translation feedback loops that integrate with diverse environmental and metabolic stimuli to generate internal 24h timing. In this review we highlight recent advances in our understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology. Understanding the way in which biological rhythms are generated throughout the body may provide avenues for temporally directed therapeutics to improve health and prevent disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity

Carla B. Green; Nicholas Douris; Shihoko Kojima; Carl A. Strayer; Joseph Fogerty; David Lourim; Susanna R. Keller; Joseph C. Besharse

The mammalian circadian system consists of a central oscillator in the suprachiasmatic nucleus of the hypothalamus, which coordinates peripheral clocks in organs throughout the body. Although circadian clocks control the rhythmic expression of a large number of genes involved in metabolism and other aspects of circadian physiology, the consequences of genetic disruption of circadian-controlled pathways remain poorly defined. Here we report that the targeted disruption of Nocturnin (Ccrn4l) in mice, a gene that encodes a circadian deadenylase, confers resistance to diet-induced obesity. Mice lacking Nocturnin remain lean on high-fat diets, with lower body weight and reduced visceral fat. However, unlike lean lipodystrophic mouse models, these mice do not have fatty livers and do not exhibit increased activity or reduced food intake. Gene expression data suggest that Nocturnin knockout mice have deficits in lipid metabolism or uptake, in addition to changes in glucose and insulin sensitivity. Our data support a pivotal role for Nocturnin downstream of the circadian clockwork in the posttranscriptional regulation of genes necessary for nutrient uptake, metabolism, and storage.


Science | 2013

TH17 Cell Differentiation Is Regulated by the Circadian Clock

Xiaofei Yu; Darcy Rollins; Kelly A. Ruhn; Jeremy J. Stubblefield; Carla B. Green; Masaki Kashiwada; Paul B. Rothman; Joseph S. Takahashi; Lora V. Hooper

Lighting Up Immunity TH17 cells are CD4+ T helper cells that produce the proinflammatory cytokine interleukin-17. In the intestines, TH17 cells protect the host from fungal and bacterial infections, and their proinflammatory function is linked with autoimmune diseases including inflammatory bowel disease. Yu et al. (p. 727) show that the molecular circadian clock directly regulates the differentiation of TH17 cells in the intestine, which suggest that both nutrition and light are important environmental factors that directly regulate the immune response. Diurnal regulation of an immune cell lineage in the intestine protects against inflammatory disease in mice. Circadian clocks regulate numerous physiological processes that vary across the day-night (diurnal) cycle, but if and how the circadian clock regulates the adaptive immune system is mostly unclear. Interleukin-17–producing CD4+ T helper (TH17) cells are proinflammatory immune cells that protect against bacterial and fungal infections at mucosal surfaces. Their lineage specification is regulated by the orphan nuclear receptor RORγt. We show that the transcription factor NFIL3 suppresses TH17 cell development by directly binding and repressing the Rorγt promoter. NFIL3 links TH17 cell development to the circadian clock network through the transcription factor REV-ERBα. Accordingly, TH17 lineage specification varies diurnally and is altered in Rev-erbα−/− mice. Light-cycle disruption elevated intestinal TH17 cell frequencies and increased susceptibility to inflammatory disease. Thus, lineage specification of a key immune cell is under direct circadian control.


Cell | 2013

Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm

Seung Hee Yoo; Jennifer A. Mohawk; Sandra M. Siepka; Yongli Shan; Seong Kwon Huh; Hee Kyung Hong; Izabela Kornblum; Vivek Kumar; Nobuya Koike; Ming Xu; Justin Nussbaum; Xinran Liu; Zheng Chen; Zhijian J. Chen; Carla B. Green; Joseph S. Takahashi

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Journal of Cell Science | 2011

Post-transcriptional control of circadian rhythms

Shihoko Kojima; Danielle L. Shingle; Carla B. Green

Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by post-transcriptional mechanisms and how this is crucial for robust circadian rhythmicity.


Journal of Biological Rhythms | 2004

Retinal Circadian Clocks and Control of Retinal Physiology

Carla B. Green; Joseph C. Besharse

Retinas of all classes of vertebrates contain endogenous circadian clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis, and cellular events such as rod disk shedding, intracellular signaling pathways, and gene expression. The vertebrate retina is an example of a “peripheral” oscillator that is particularly amenable to study because this tissue is well characterized, the relationships between the various cell types are extensively studied, and many local clock-controlled rhythms are known. Although the existence of a photoreceptor clock is well established in several species, emerging data are consistent with multiple or dual oscillators within the retina that interact to control local physiology. Aprominent example is the antiphasic regulation of melaton in and dopamine in photoreceptors and inner retina, respectively. This review focuses on the similarities and differences in the molecular mechanisms of the retinal versus the SCN oscillators, as well as on the expression of core components of the circadian clockwork in retina. Finally, the interactions between the retinal clock(s) and the master clock in the SCN are examined.


Science | 2012

Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex

Nian Huang; Yogarany Chelliah; Yongli Shan; Clinton A. Taylor; Seung Hee Yoo; Carrie L. Partch; Carla B. Green; Hong Zhang; Joseph S. Takahashi

A Timely Structure The physiology and behavior of most organisms are inextricably aligned with the day/night cycle. In mammals, these daily rhythms are generated by a circadian clock encoded by transcriptional activators and repressors operating in a feedback loop that takes about 24 hours to complete. A key participant in this loop is a heterodimeric transcriptional activator consisting of the CLOCK and BMAL1 proteins. Huang et al. (p. 189, published online 31 May; see Perspective by Crane) determined the crystal structure of a complex containing the PAS domains (implicated in protein-protein interactions) and the basic helix-loop-helix domains (implicated in DNA binding) from each protein. CLOCK and BMAL1 were observed to be tightly intertwined in an unusual asymmetric conformation, which may contribute to the stability and activity of the complex. Structure-function analyses reveal details of the interaction between two proteins that regulate daily rhythms in mammals. The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 Å resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits—bHLH, PAS-A, and PAS-B—tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.


BMC Developmental Biology | 2001

Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

Yunxia Wang; David Osterbur; P. Megaw; Gianluca Tosini; Chiaki Fukuhara; Carla B. Green; Joseph C. Besharse

BackgroundNocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse.ResultscDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver.ConclusionThe widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

Collaboration


Dive into the Carla B. Green's collaboration.

Top Co-Authors

Avatar

Joseph S. Takahashi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy J. Stubblefield

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph C. Besharse

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haisun Zhu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Gao

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge