Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph S. Takahashi is active.

Publication


Featured researches published by Joseph S. Takahashi.


Cell | 2002

Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock

Satchidananda Panda; Marina P. Antoch; Brooke H. Miller; Andrew I. Su; Andrew B. Schook; Marty Straume; Peter G. Schultz; Steve A. Kay; Joseph S. Takahashi; John B. Hogenesch

In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.


Cell | 1997

Positional Cloning of the Mouse Circadian Clock Gene

David P. King; Yaliang Zhao; Ashvin M. Sangoram; Lisa D. Wilsbacher; Minoru Tanaka; Marina P. Antoch; Thomas D.L. Steeves; Martha Hotz Vitaterna; Jon M. Kornhauser; Phillip L. Lowrey; Fred W. Turek; Joseph S. Takahashi

We used positional cloning to identify the circadian Clock gene in mice. Clock is a large transcription unit with 24 exons spanning approximately 100,000 bp of DNA from which transcript classes of 7.5 and approximately 10 kb arise. Clock encodes a novel member of the bHLH-PAS family of transcription factors. In the Clock mutant allele, an A-->T nucleotide transversion in a splice donor site causes exon skipping and deletion of 51 amino acids in the CLOCK protein. Clock is a unique gene with known circadian function and with features predicting DNA binding, protein dimerization, and activation domains. CLOCK represents the second example of a PAS domain-containing clock protein (besides Drosophila PERIOD), which suggests that this motif may define an evolutionarily conserved feature of the circadian clock mechanism.


Cell | 2000

Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals

Maureen K. Bunger; Lisa D. Wilsbacher; Susan M. Moran; Cynthia Clendenin; Laurel A. Radcliffe; John B. Hogenesch; M. Celeste Simon; Joseph S. Takahashi; Christopher A. Bradfield

Circadian oscillations in mammalian physiology and behavior are regulated by an endogenous biological clock. Here we show that loss of the PAS protein MOP3 (also known as BMAL1) in mice results in immediate and complete loss of circadian rhythmicity in constant darkness. Additionally, locomotor activity in light-dark (LD) cycles is impaired and activity levels are reduced in Mop3-/- mice. Analysis of Period gene expression in the suprachiasmatic nucleus (SCN) indicates that these behavioral phenotypes arise from loss of circadian function at the molecular level. These results provide genetic evidence that MOP3 is the bona fide heterodimeric partner of mCLOCK. Furthermore, these data demonstrate that MOP3 is a nonredundant and essential component of the circadian pacemaker in mammals.


Nature Reviews Genetics | 2008

The genetics of mammalian circadian order and disorder: implications for physiology and disease

Joseph S. Takahashi; Hee Kyung Hong; Caroline H. Ko; Erin L. McDearmon

Circadian cycles affect a variety of physiological processes, and disruptions of normal circadian biology therefore have the potential to influence a range of disease-related pathways. The genetic basis of circadian rhythms is well studied in model organisms and, more recently, studies of the genetic basis of circadian disorders has confirmed the conservation of key players in circadian biology from invertebrates to humans. In addition, important advances have been made in understanding how these molecules influence physiological functions in tissues throughout the body. Together, these studies set the scene for applying our knowledge of circadian biology to the understanding and treatment of a range of human diseases, including cancer and metabolic and behavioural disorders.


Science | 2010

Circadian Integration of Metabolism and Energetics

Joseph Bass; Joseph S. Takahashi

Circadian clocks align behavioral and biochemical processes with the day/night cycle. Nearly all vertebrate cells possess self-sustained clocks that couple endogenous rhythms with changes in cellular environment. Genetic disruption of clock genes in mice perturbs metabolic functions of specific tissues at distinct phases of the sleep/wake cycle. Circadian desynchrony, a characteristic of shift work and sleep disruption in humans, also leads to metabolic pathologies. Here, we review advances in understanding the interrelationship among circadian disruption, sleep deprivation, obesity, and diabetes and implications for rational therapeutics for these conditions.


Nature | 2010

Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes

Biliana Marcheva; Kathryn Moynihan Ramsey; Ethan D. Buhr; Yumiko Kobayashi; Hong Su; Caroline H. Ko; Ganka Ivanova; Chiaki Omura; Shelley Mo; Martha Hotz Vitaterna; James P. Lopez; Louis H. Philipson; Christopher A. Bradfield; Seth D. Crosby; Lellean JeBailey; Xiaozhong Wang; Joseph S. Takahashi; Joseph Bass

The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus–secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep–wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.


Annual Review of Neuroscience | 2012

Central and peripheral circadian clocks in mammals.

Jennifer A. Mohawk; Carla B. Green; Joseph S. Takahashi

The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.


Science | 2009

Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.

Kathryn Moynihan Ramsey; Jun Yoshino; Cynthia S. Brace; Dana Abrassart; Yumiko Kobayashi; Biliana Marcheva; Hee Kyung Hong; Jason L. Chong; Ethan D. Buhr; Choogon Lee; Joseph S. Takahashi; Shin-ichiro Imai; Joseph Bass

Circadian Oscillations The 24-hour day-night cycle plays an important role in mammalian physiology and behavior and, as most travelers are well aware, there is an intimate link between our in-built circadian clocks and metabolic rhythms. This link is in part forged by the protein deacetylase SIRT1, which regulates the clocks molecular circuitry. SIRT1 uses as a cofactor the cellular metabolite NAD+, which is synthesized through a salvage pathway that includes the enzyme nicotinamide phosphoribosyltransferase (NAMPT) (see the Perspective by Wijnen). Ramsey et al. (p. 651; published online 19 March) and Nakahata et al. (p. 654, published online 12 March) now show that NAMPT and NAD+ levels oscillate during the daily 24-hour cycle and that this oscillation is regulated by the circadian clock. Furthermore, the oscillations in NAD+ modulate the activity of SIRT1 feeding back into the circadian clock. A transcriptional-enzymatic feedback loop controls interactions between metabolism and circadian rhythms in mouse cells. The circadian clock is encoded by a transcription-translation feedback loop that synchronizes behavior and metabolism with the light-dark cycle. Here we report that both the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by SIRT1. In turn, the circadian transcription factor CLOCK binds to and up-regulates Nampt, thus completing a feedback loop involving NAMPT/NAD+ and SIRT1/CLOCK:BMAL1.


Cell | 2008

The Meter of Metabolism

Carla B. Green; Joseph S. Takahashi; Joseph Bass

The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.


Annual Review of Physiology | 2010

Suprachiasmatic Nucleus: Cell Autonomy and Network Properties

David K. Welsh; Joseph S. Takahashi; Steve A. Kay

The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.

Collaboration


Dive into the Joseph S. Takahashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung Hee Yoo

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Vivek Kumar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla B. Green

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ethan D. Buhr

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge