Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla Bazzicalupi is active.

Publication


Featured researches published by Carla Bazzicalupi.


Nucleic Acids Research | 2013

The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1:1

Carla Bazzicalupi; Marta Ferraroni; Anna Rita Bilia; Francesca Scheggi; Paola Gratteri

The first crystal structure of human telomeric DNA in complex with the natural alkaloid berberine, produced by different plant families and used in folk medicine for millennia, was solved by X-ray diffraction method. The G-quadruplex unit features all-parallel strands. The overall folding assumed by DNA is the same found in previously reported crystal structures. Similarly to previously reported structures the ligand molecules were found to be stacked onto the external 5′ and 3′-end G-tetrads. However, the present crystal structure highlighted for the first time, the presence of two berberine molecules in the two binding sites, directly interacting with each tetrad. As a consequence, our structural data point out a 2:1 ligand to G-tetrad molar ratio, which has never been reported before in a telomeric intramolecular quadruplex structure.


ACS Chemical Biology | 2012

Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-quadruplex DNA.

Irene Bessi; Carla Bazzicalupi; Christian Richter; Hendrik R. A. Jonker; Krishna Saxena; Claudia Sissi; Matteo Chioccioli; Sara Bianco; Anna Rita Bilia; Harald Schwalbe; Paola Gratteri

G-quadruplex structures can be formed at the single-stranded overhang of telomeric DNA, and ligands able to stabilize this structure have recently been identified as potential anticancer drugs. Among the potential G-quadruplex binders, we have studied the binding ability of berberine and sanguinarine, two members of the alkaloid family, an important class of natural products long known for medicinal purpose. Our spectroscopic (CD, NMR, and fluorescence) studies and molecular modeling approaches revealed binding modes at ligand-complex stoichiometries >1:1 and ligand self-association induced by DNA for the interactions of the natural alkaloids berberine and sanguinarine with the human telomeric G-quadruplex DNA.


Inorganic Chemistry | 2008

Tuning the Activity of Zn(II) Complexes in DNA Cleavage : Clues for Design of New Efficient Metallo-Hydrolases

Carla Bazzicalupi; Andrea Bencini; Claudia Bonaccini; Claudia Giorgi; Paola Gratteri; Stefano Moro; Manlio Palumbo; Alessandro Simionato; Jacopo Sgrignani; Claudia Sissi; Barbara Valtancoli

The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.


Chemistry: A European Journal | 2013

Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing

Carla Bazzicalupi; Claudia Caltagirone; Zenfeng Cao; Qibin Chen; Corrado Di Natale; Alessandra Garau; Vito Lippolis; Larisa Lvova; Honglai Liu; Ingemar Lundström; M. Cristina Mostallino; Mattia Nieddu; Roberto Paolesse; Luca Prodi; Massimo Sgarzi; Nelsi Zaccheroni

Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg(2+) ion binding, the development of fluorescence-based devices for in-field Hg(2+) detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin-based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1-L3. These probes revealed an OFF-ON selective response to the presence of Hg(2+) ions in MeCN/H2 O 4:1 (v/v), which allowed imaging of this metal ion in Cos-7 cells in vitro. Once included in silica core-polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)-based polymeric membranes, ligands L1-L3 can also selectively sense Hg(2+) ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg(2+) ions in natural water samples.


Journal of the American Chemical Society | 2013

Thermodynamics of Anion−π Interactions in Aqueous Solution

Paloma Arranz-Mascarós; Carla Bazzicalupi; Antonio Bianchi; Claudia Giorgi; Maria-Luz Godino-Salido; Maria-Dolores Gutiérrez-Valero; Rafael López-Garzón; Matteo Savastano

Thermodynamic parameters (ΔG°, ΔH°, TΔS°), obtained by means of potentiometric and isothermal titration calorimetry (ITC) methods, for the binding equilibria involving anions of high negative charge, like SO(4)(2-), SeO(4)(2-), S(2)O(3)(2-) and Co(CN)(6)(3-), and nitroso-amino-pyrimidine receptors in water suggested that anion-π interactions furnish a stabilization of about -10 kJ/mol to the free energy of association. These anion-π interactions are almost athermic and favored by large entropic contributions which are likely due to the reduced hydrophobic pyrimidine surface exposed to water after anion aggregation, and the consequent reduced disruptive effect on the dynamic water structure. The crystal structure of the {H(4)L[Co(CN)(6)]}·2H(2)O complex showed strong anion-π interactions between Co(CN)(6)(3-) and the protonated H(4)L(3+) receptor. The CN···centroid distance (2.786(3) Å), occurring with a cyanide N atom located almost above the centroid of the pyrimidine ring, is the shortest distance till now reported for the interaction between CN(-) ions and heteroaromatic rings.


Journal of Organic Chemistry | 2009

Exploring the Binding Ability of Phenanthroline-Based Polyammonium Receptors for Anions: Hints for Design of Selective Chemosensors for Nucleotides

Carla Bazzicalupi; Andrea Bencini; Silvia Biagini; Enrico Faggi; Stefano Meini; Claudia Giorgi; Alessio Spepi; Barbara Valtancoli

The synthesis of receptor 2,6,10,14,18-pentaaza[20]-21,34-phenanthrolinophane (L1), containing a pentaamine chain linking the 2,9 positions of a phenanthroline unit, is reported. The protonation features of L1 and of receptor 2,6,10,14,18,22-hexaaza[23]-24,37-phenanthrolinophane (L2) have been studied by means of potentiometric, (1)H NMR, and spectrofluorimetric measurements; this study points out that the fluorescent emission of both receptors depends on the protonation state of the polyamine chain. In fact, the receptors are emissive only at neutral or acidic pH values, where all the aliphatic amine groups are protonated. Potentiometric titrations show that L2 is able to bind selectively ATP over TTP, CTP, and GTP. This selectivity is lost in the case of L1. (1)H and (31)P NMR measurements and molecular mechanics calculations show that the phosphate chains of nucleotides give strong electrostatic and hydrogen-bonding interactions with the ammonium groups of the protonated receptors, while the nucleobases interact either via pi-stacking with phenanthroline or via hydrogen bonding with the ammonium groups. Of note, MM calculations suggest that all nucleotides interact in an inclusive fashion. In fact, in all adducts the phosphate chain is enclosed within the receptor cavities. This structural feature is confirmed by the crystal structure of the [(H(6)L2)(2)(TTP)(2)(H(2)O)(2)](4+) adduct. Fluorescence emission measurements at different pH values show that L2 is also able to ratiometrically sense ATP in a narrow pH range, thanks to emission quenching due to a photoinduced electron transfer (PET) process from an amine group of the receptor to the excited phenanthroline.


Inorganic Chemistry | 2009

Anion Binding by Protonated Forms of the Tripodal Ligand Tren

Carla Bazzicalupi; Andrea Bencini; Antonio Bianchi; Andrea Danesi; Claudia Giorgi; Barbara Valtancoli

The interaction of the protonated forms of tris(2-aminoethyl)amine (tren) with NO(3)(-), SO(4)(2-), TsO(-), PO(4)(3-), P(2)O(7)(4-), and P(3)O(10)(5-) was studied by means of potentiometric and microcalorimetric measurements in a 0.10 M NMe(4)Cl aqueous solution at 298.1 +/- 0.1 K, affording stability constants and the relevant energetic terms DeltaH degrees and TDeltaS degrees of complexation. Thermodynamic data show that these anion complexation processes are mainly controlled by electrostatic forces, although hydrogen-bond interactions and solvation effects also contribute to complex stability, leading, in some cases, to special DeltaH degrees and TDeltaS degrees contributions. The crystal structures of [H(3)L][NO(3)](3) and [H(3)L][TsO](3) evidence a preferred tridentate coordination mode of the triprotonated ligands in the solid state. Accordingly, the H(3)L(3+) receptor binds a single oxygen atom of both NO(3)(-) and TsO(-) by means of its three protonated fingers, although in the crystal structure of [H(3)L][TsO](3), one conformer displaying bidentate coordination was also found. Modeling studies performed on the [H(3)L(NO(3))](2+) complex suggested that the tridentate binding mode is the preferred one in aqueous solution, while in the gas phase, a different complex conformation in which the receptor interacts with all three oxygen atoms of NO(3)(-) is more stable.


Chemical Communications | 2011

Colorimetric response to anions by a "robust" copper(II) complex of a [9]aneN3 pendant arm derivative: CN- and I- selective sensing.

Marta Aguado Tetilla; M. Carla Aragoni; Massimiliano Arca; Claudia Caltagirone; Carla Bazzicalupi; Andrea Bencini; Alessandra Garau; Francesco Isaia; Antonio Laguna; Vito Lippolis; Valeria Meli

The 1 : 1 complex [Cu(L)](BF(4))(2)·MeCN (1) of the tetradentate ligand 1-(2-quinolinylmethyl)-1,4,7-triazacyclononane (L) selectively changes its colour in the presence of CN(-) in H(2)O and MeCN (without undergoing decomplexation from the macrocyclic ligand). The same complex in MeCN assumes different colours in the presence of CN(-) or I(-).


Inorganic Chemistry | 2011

Exploring the binding ability of polyammonium hosts for anionic substrates: selective size-dependent recognition of different phosphate anions by bis-macrocyclic receptors.

Carla Bazzicalupi; Andrea Bencini; Claudia Giorgi; Barbara Valtancoli; Vito Lippolis; Alessandro Perra

Binding of mono-, di-, and triphosphate, adenosine diphosphate (ADP), and adenosine triphosphatase (ATP) with receptors L1-L3, composed of two [9]aneN(3) units separated by a 2,9-dimethylene-1,10-phenanthroline (L1), a 2,6-dimethylenepyridine (L2), or a 2,3-dimethylenequinoxaline (L3) spacer, has been studied by means of potentiometric titrations, (1)H and (31)P NMR measurements in aqueous solutions, and molecular modeling calculations. In the case of inorganic phosphates, the binding properties of the receptors appear to be determined by their geometrical features, in particular the distance between the two [9]aneN(3) units imposed by the spacer separating the two macrocyclic units. While L1 is able to selectively bind triphosphate over di- and monophosphate, L3 selectively coordinates the smaller monophosphate anion. Finally, L2 shows preferential binding of diphosphate. (1)H and (31)P NMR measurements show that the complexes are essentially stabilized by charge-charge and hydrogen-bonding interactions between the anion and the protonated amine groups of the macrocyclic subunits of the receptors. Molecular dynamics simulations suggest that the larger distance between the two macrocyclic units of L1 allows this receptor to form a larger number of hydrogen-bonding contacts with triphosphate, justifying its selectivity toward this anion. Conversely, in the case of L3, the two facing [9]aneN3 units give rise to a cleft of appropriate dimensions where the small monophosphate anion can be conveniently hosted. Considering nucleotide coordination, L1 is a better receptor for ATP and ADP than L2, thanks to the higher ability of phenanthroline to establish stabilizing π stacking and hydrophobic interactions with the adenine units of the guests.


Journal of the American Chemical Society | 2008

Polyfunctional Binding of Thymidine 5'-Triphosphate with a Synthetic Polyammonium Receptor Containing Aromatic Groups. Crystal Structure of the Nucleotide-Receptor Adduct

Carla Bazzicalupi; Andrea Bencini; Antonio Bianchi; Enrico Faggi; Claudia Giorgi; Samuele Santarelli; Barbara Valtancoli

The protonated forms of the new polyfunctional polyamine receptors L, containing two terpyridine units linked together by two diamine spacers, interact with the nucleotide thymidine 5‘-triphosphate (TTP) to form stable adducts in aqueous solution. Both solution studies and the crystal structure of the [(H4L)HTTP]·12H2O adduct show that tight association of the two partners is achieved by the formation of hydrogen bonds and salt bridges involving the ammonium groups of L and TTP phosphate oxygen atoms and multiple interactions of the nucleobase with aliphatic and aromatic groups of the ligand, mimicking the modes of interaction of TTP binding proteins.

Collaboration


Dive into the Carla Bazzicalupi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Pina

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge