Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla J. Eaton is active.

Publication


Featured researches published by Carla J. Eaton.


Current Opinion in Microbiology | 2008

Role of reactive oxygen species in fungal cellular differentiations

Barry Scott; Carla J. Eaton

Regulated synthesis of reactive oxygen species (ROS) by specific fungal NADPH oxidases (Noxs) plays a key role in fungal cellular differentiation and development. Fungi have up to three different Nox isoforms, NoxA, B and C. The NoxA isoform has a key role in triggering the development of fruiting bodies in several sexual species whereas NoxB plays a key role in ascospore germination. The function of NoxC remains unknown. Both NoxA and NoxB are required for the development of fungal infection structures by some plant pathogens. ROS production by NoxA is critical for maintaining a fungal-plant symbiosis. Localised synthesis of ROS is also important in establishing and maintaining polarised hyphal growth. Activation of NoxA/NoxB requires the regulatory subunit, NoxR, and the small GTPase RacA. The BemA scaffold protein may also be involved in the assembly of the Nox complex. By analogy with mammalian systems MAP and PAK kinases may regulate fungal Nox activation. How fungal cells sense and respond to ROS associated with cellular differentiations remains to be discovered.


Plant Science | 2011

What triggers grass endophytes to switch from mutualism to pathogenism

Carla J. Eaton; Murray P. Cox; Barry Scott

Symbioses between cool season grasses and fungi of the family Clavicipitaceae are an integral component of both natural and agricultural ecosystems. An excellent experimental model is the association between the biotrophic fungus Epichloë festucae and Lolium perenne (perennial ryegrass). The fungal partner produces a suite of secondary metabolites that protect the host from various biotic and abiotic stresses. The plant host provides a source of nutrients and a mechanism of dissemination via seed transmission. Crucial mechanisms that maintain a stable mutualistic association include signaling through the stress activated MAP kinase pathway and production of reactive oxygen species by the fungal NADPH oxidase (Nox) complex. Disruption of components of the Nox complex (NoxA, NoxR and RacA), or the stress-activated MAP kinase (SakA), leads to a breakdown in this finely balanced association, resulting in pathogenic infection instead of mutualism. Hosts infected with fungi lacking a functional Nox complex, or the stress-activated MAP kinase, display a stunted phenotype and undergo premature senescence, while the fungus switches from restricted to proliferative growth. To gain insight into the mechanisms that underlie these physiological changes, high throughput mRNA sequencing has been used to analyze the transcriptomes of both host and symbiont in wild-type and a mutant association. In the ΔsakA mutant association, a dramatic up-regulation of fungal hydrolases and transporters was observed, changes consistent with a switch from restricted symbiotic to proliferative pathogenic growth. Analysis of the plant transcriptome revealed dramatic changes in expression of host genes involved in pathogen defense, transposon activation and hormone biosynthesis and response. This review highlights how finely tuned grass-endophyte associations are, and how interfering with the signaling pathways involved in maintenance of these associations can trigger a change from mutualistic to pathogenic interaction.


Plant Physiology | 2010

Disruption of Signaling in a Fungal-Grass Symbiosis Leads to Pathogenesis

Carla J. Eaton; Murray P. Cox; Barbara Ambrose; Matthias Becker; Uljana Hesse; Christopher L. Schardl; Barry Scott

Symbiotic associations between plants and fungi are a dominant feature of many terrestrial ecosystems, yet relatively little is known about the signaling, and associated transcriptome profiles, that define the symbiotic metabolic state. Using the Epichloë festucae-perennial ryegrass (Lolium perenne) association as a model symbiotic experimental system, we show an essential role for the fungal stress-activated mitogen-activated protein kinase (sakA) in the establishment and maintenance of this mutualistic interaction. Deletion of sakA switches the fungal interaction with the host from mutualistic to pathogenic. Infected plants exhibit loss of apical dominance, premature senescence, and dramatic changes in development, including the formation of bulb-like structures at the base of tillers that lack anthocyanin pigmentation. A comparison of the transcriptome of wild-type and sakA associations using high-throughput mRNA sequencing reveals dramatic changes in fungal gene expression consistent with the transition from restricted to proliferative growth, including a down-regulation of several clusters of secondary metabolite genes and up-regulation of a large set of genes that encode hydrolytic enzymes and transporters. Analysis of the plant transcriptome reveals up-regulation of host genes involved in pathogen defense and transposon activation as well as dramatic changes in anthocyanin and hormone biosynthetic/responsive gene expression. These results highlight the fine balance between mutualism and antagonism in a plant-fungal interaction and the power of deep mRNA sequencing to identify candidate sets of genes underlying the symbiosis.


Current Genetics | 2008

Functional analysis of a fungal endophyte stress-activated MAP kinase

Carla J. Eaton; Isabelle Jourdain; Simon J. Foster; Jeremy S. Hyams; Barry Scott

The ability of fungi to sense and respond rapidly to environmental stress is crucial for their survival in the wild. One of the most important pathways involved in this response is the stress-activated MAP (mitogen-activated protein) kinase pathway. We report here on the isolation of the stress-activated MAP kinase, sakA, from the fungal endophyte Epichloë festucae. Complementation of the stress sensitivity and cell cycle defects of an Schizosaccharomyces pombe sty1Δ mutant with sakA confirmed it encodes a functional MAP kinase. Analysis of an E. festucae ΔsakA mutant revealed sakA is essential for growth under conditions of temperature and osmotic stress in culture, and for sensitivity to the fungicide fludioxonil. However, the ΔsakA mutant shows no increased sensitivity to hydrogen peroxide. Given sakA can rescue the sty1Δ mutant from sensitivity to oxidative stress, SakA has the potential to sense and transduce oxidative stress signals. The ΔsakA mutant is also defective in conidia formation, suggesting a role for SakA in asexual development of E. festucae. The detection of elevated hydrogen peroxide production in the ΔsakA mutant suggests there may be a link between MAP kinase and ROS (reactive oxygen species) signalling pathways in E. festucae.


New Phytologist | 2015

Fungal endophyte infection of ryegrass reprograms host metabolism and alters development

Pierre-Yves Dupont; Carla J. Eaton; Jason J. Wargent; Susanne Fechtner; Peter S. Solomon; Jan Schmid; Robert C. Day; Barry Scott; Murray P. Cox

Summary Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool‐season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super‐infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant–microbe associations behave the same in terms of their effects on the host.


Molecular Plant-microbe Interactions | 2015

The Fungal Cell-Wall Integrity MAPK Cascade Is Crucial for Hyphal Network Formation and Maintenance of Restrictive Growth of Epichloë festucae in Symbiosis With Lolium perenne.

Yvonne Becker; Carla J. Eaton; Emma Brasell; Kimberley J. May; Matthias Becker; Berit Hassing; Gemma M. Cartwright; Leonie Reinhold; Barry Scott

Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell–cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.


Genetics | 2011

RIC8 Is a Guanine-Nucleotide Exchange Factor for Gα Subunits That Regulates Growth and Development in Neurospora crassa

Sara J. Wright; Regina Inchausti; Carla J. Eaton; Svetlana Krystofova; Katherine A. Borkovich

Heterotrimeric (αβγ) G proteins are crucial components of eukaryotic signal transduction pathways. G-protein-coupled receptors (GPCRs) act as guanine nucleotide exchange factors (GEFs) for Gα subunits. Recently, facilitated GDP/GTP exchange by non-GPCR GEFs, such as RIC8, has emerged as an important mechanism for Gα regulation in animals. RIC8 is present in animals and filamentous fungi, such as the model eukaryote Neurospora crassa, but is absent from the genomes of baker’s yeast and plants. In Neurospora, deletion of ric8 leads to profound defects in growth and asexual and sexual development, similar to those observed for a mutant lacking the Gα genes gna-1 and gna-3. In addition, constitutively activated alleles of gna-1 and gna-3 rescue many defects of Δric8 mutants. Similar to reports in Drosophila, Neurospora Δric8 strains have greatly reduced levels of G-protein subunits. Effects on cAMP signaling are suggested by low levels of adenylyl cyclase protein in Δric8 mutants and suppression of Δric8 by a mutation in the protein kinase A regulatory subunit. RIC8 acts as a GEF for GNA-1 and GNA-3 in vitro, with the strongest effect on GNA-3. Our results support a role for RIC8 in regulating GNA-1 and GNA-3 in Neurospora.


Molecular Plant-microbe Interactions | 2015

A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp.

Carla J. Eaton; Pierre-Yves Dupont; Peter S. Solomon; William Clayton; Barry Scott; Murray P. Cox

Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.


PLOS ONE | 2012

The Guanine Nucleotide Exchange Factor RIC8 Regulates Conidial Germination through Gα Proteins in Neurospora crassa

Carla J. Eaton; Ilva E. Cabrera; Jacqueline A. Servin; Sara J. Wright; Murray P. Cox; Katherine A. Borkovich

Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia) germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth.


Toxins | 2013

Deletion and gene expression analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli.

Barry Scott; Carolyn A. Young; Sanjay Saikia; Lisa K. McMillan; Brendon J. Monahan; Albert Koulman; Jonathan Astin; Carla J. Eaton; Andrea Bryant; Ruth E. Wrenn; Sarah C. Finch; Brian A. Tapper; Emily J. Parker; Geoffrey B. Jameson

The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.

Collaboration


Dive into the Carla J. Eaton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara J. Wright

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter S. Solomon

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge