Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre-Yves Dupont is active.

Publication


Featured researches published by Pierre-Yves Dupont.


New Phytologist | 2015

Fungal endophyte infection of ryegrass reprograms host metabolism and alters development

Pierre-Yves Dupont; Carla J. Eaton; Jason J. Wargent; Susanne Fechtner; Peter S. Solomon; Jan Schmid; Robert C. Day; Barry Scott; Murray P. Cox

Summary Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool‐season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super‐infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant–microbe associations behave the same in terms of their effects on the host.


Molecular Plant-microbe Interactions | 2015

A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp.

Carla J. Eaton; Pierre-Yves Dupont; Peter S. Solomon; William Clayton; Barry Scott; Murray P. Cox

Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.


Advances in Botanical Research | 2014

Genomes of Plant-Associated Clavicipitaceae

Christopher L. Schardl; Carolyn A. Young; Neil Moore; Nicholas Krom; Pierre-Yves Dupont; Juan Pan; Simona Florea; Jennifer S. Webb; Jolanta Jaromczyk; Jerzy W. Jaromczyk; Murray P. Cox; Mark L. Farman

Abstract Fungi of family Clavicipitaceae serve as models for evolution on the symbiotic continuum from pathogenic to mutualistic. Clavicipitaceous fungi associate with plants, invertebrates, and other fungi. Most plant-associated Clavicipitaceae systemically colonize shoots, but the fungal fruiting structures are localized to inflorescences, florets, buds, leaves, or nodes. Many Clavicipitaceae decrease or eliminate host seed production, but some have evolved such intimate symbioses with plant hosts that they disseminate clonally in seeds (vertical transmission) without damage or any reduction in plant fertility. In such cases, the fungi dramatically enhance host fitness by producing defensive alkaloids and through other mechanisms. To date, sequences have been assembled for 26 Clavicipitaceae representing 21 species in seven genera. These include three Claviceps species that fruit on and replace host ovaries, two Metarhizium species that parasitize insects and associate with plant roots, and 21 strains of systemic plant parasites or symbionts. Of the latter, 14 are capable of vertical transmission, and of those, 7 are strictly seed-borne mutualists in genera Epichloe and Periglandula . Alkaloid biosynthetic genes are widely distributed among these fungi. Gene clusters for ergot alkaloids and indole-diterpenes, both of which are neurotoxins in vertebrates and invertebrates, are present in members of all seven genera. The genes for anti-insect loline alkaloids and peramine have a more restricted distribution, but are present in many of the vertically transmissible Epichloe species. The availability of these genome sequences will facilitate studies of the evolution and mechanisms underlying the diversity of metabolism, host interactions, and niche adaptation of plant-associated Clavicipitaceae.


Molecular Plant-microbe Interactions | 2017

Host Tissue Environment Directs Activities of an Epichloë Endophyte, While It Induces Systemic Hormone and Defense Responses in Its Native Perennial Ryegrass Host

Jan Schmid; Robert B. Day; Ningxin Zhang; Pierre-Yves Dupont; Murray P. Cox; Christopher L. Schardl; Niki Minards; Mauro Truglio; Neil Moore; Daniel R. Harris; Yanfei Zhou

Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the hosts hormonal responses and induction of stress response genes. [Formula: see text] Copyright


G3: Genes, Genomes, Genetics | 2017

Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi

Pierre-Yves Dupont; Murray P. Cox

Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported.


BMC Bioinformatics | 2015

HyLiTE: accurate and flexible analysis of gene expression in hybrid and allopolyploid species.

Wandrille Duchemin; Pierre-Yves Dupont; Matthew A. Campbell; Austen R. D. Ganley; Murray P. Cox

BackgroundForming a new species through the merger of two or more divergent parent species is increasingly seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy.ResultsHere we present HyLiTE – a single-step analysis to obtain tables of homeolog expression in a hybrid or allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus allowing HyLiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized for genes with low to moderate expression.ConclusionsHyLiTE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene expression following genome merger. HyLiTE offers practical advantages over manual methods and existing programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose following genome merger, and offers accurate performance on non-model organisms.


Fungal Genetics and Biology | 2017

Evolution of polyketide synthesis in a Dothideomycete forest pathogen

I. Kutay Ozturk; Pranav Chettri; Pierre-Yves Dupont; Irene Barnes; Rebecca McDougal; Geromy G. Moore; Andre Sim; Rosie E. Bradshaw

Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.


PLOS Genetics | 2018

Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae

David J. Winter; Austen R. D. Ganley; Carolyn A. Young; Ivan Liachko; Christopher L. Schardl; Pierre-Yves Dupont; Daniel Berry; Arvina Ram; Barry Scott; Murray P. Cox

Structural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organisation influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus, Epichloë festucae. We use Hi-C data to examine the three-dimensional organisation of the genome, and RNA-seq data to investigate how Epichloë genome structure contributes to the suite of transcriptional changes needed to maintain symbiotic relationships with the grass host. Our results reveal a genome in which very repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences that are almost repeat-free. In contrast to other species reported to date, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


Molecular Microbiology | 2018

Chromatin-level regulation of the fragmented dothistromin gene cluster in the forest pathogen Dothistroma septosporum : Chromatin regulation of a fragmented cluster

Pranav Chettri; Pierre-Yves Dupont; Rosie E. Bradshaw

Genes required for fungal secondary metabolite production are usually clustered, co‐regulated and expressed in stationary growth phase. Chromatin modification has an important role in co‐regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP‐qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin‐level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.


PLOS ONE | 2017

Analysis of simple sequence repeat (SSR) structure and sequence within Epichloë endophyte genomes reveals impacts on gene structure and insights into ancestral hybridization events.

William Clayton; Carla J. Eaton; Pierre-Yves Dupont; Tim Gillanders; Nick Cameron; Sanjay Saikia; Barry Scott

Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.

Collaboration


Dive into the Pierre-Yves Dupont's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge