Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carles Cantó is active.

Publication


Featured researches published by Carles Cantó.


Nature | 2009

AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity

Carles Cantó; Zachary Gerhart-Hines; Jerome N. Feige; Marie Lagouge; Liliana Noriega; Jill Milne; Peter J. Elliott; Pere Puigserver; Johan Auwerx

AMP-activated protein kinase (AMPK) is a metabolic fuel gauge conserved along the evolutionary scale in eukaryotes that senses changes in the intracellular AMP/ATP ratio. Recent evidence indicated an important role for AMPK in the therapeutic benefits of metformin, thiazolidinediones and exercise, which form the cornerstones of the clinical management of type 2 diabetes and associated metabolic disorders. In general, activation of AMPK acts to maintain cellular energy stores, switching on catabolic pathways that produce ATP, mostly by enhancing oxidative metabolism and mitochondrial biogenesis, while switching off anabolic pathways that consume ATP. This regulation can take place acutely, through the regulation of fast post-translational events, but also by transcriptionally reprogramming the cell to meet energetic needs. Here we demonstrate that AMPK controls the expression of genes involved in energy metabolism in mouse skeletal muscle by acting in coordination with another metabolic sensor, the NAD+-dependent type III deacetylase SIRT1. AMPK enhances SIRT1 activity by increasing cellular NAD+ levels, resulting in the deacetylation and modulation of the activity of downstream SIRT1 targets that include the peroxisome proliferator-activated receptor-γ coactivator 1α and the forkhead box O1 (FOXO1) and O3 (FOXO3a) transcription factors. The AMPK-induced SIRT1-mediated deacetylation of these targets explains many of the convergent biological effects of AMPK and SIRT1 on energy metabolism.


Current Opinion in Lipidology | 2009

PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure.

Carles Cantó; Johan Auwerx

Purpose of review Peroxisome proliferator-activated receptor gamma coactivator-1-α (PGC-1α) has been extensively described as a master regulator of mitochondrial biogenesis. However, PGC-1α activity is not constant and can be finely tuned in response to different metabolic situations. From this point of view, PGC-1α could be described as a mediator of the transcriptional outputs triggered by metabolic sensors, providing the idea that these sensors, together with PGC-1α, might be weaving a network controlling cellular energy expenditure. In this review, we will focus on how disorders such as type 2 diabetes and the metabolic syndrome might be related to an abnormal and improper function of this network. Recent findings Two metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1 have been described to directly affect PGC-1α activity through phosphorylation and deacetylation, respectively. Although the physiological relevance of these modifications and their molecular consequences are still largely unknown, recent insight from different in-vivo transgenic models clearly suggests that AMPK, SIRT1 and PGC-1α might act as an orchestrated network to improve metabolic fitness. Summary Metabolic sensors such as AMPK and SIRT1, gatekeepers of the activity of the master regulator of mitochondria, PGC-1α, are vital links in a regulatory network for metabolic homeostasis. Together, these players explain many of the beneficial effects of physical activity and dietary interventions in our battle against type 2 diabetes and related metabolic disorders. Hence, understanding the mechanisms by which they act could guide us to identify and improve preventive and therapeutic strategies for metabolic diseases.


Cell Metabolism | 2008

Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.

Jerome N. Feige; Marie Lagouge; Carles Cantó; Axelle Strehle; Sander M. Houten; Jill Milne; Philip D. Lambert; Chikage Mataki; Peter J. Elliott; Johan Auwerx

The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue. These metabolic effects of SRT1720 are mediated by the induction of a genetic network controlling fatty acid oxidation through a multifaceted mechanism that involves the direct deacetylation of PGC-1alpha, FOXO1, and p53 and the indirect stimulation of AMPK signaling through a global metabolic adaptation mimicking low energy levels. Combined with our previous work on resveratrol, the current study further validates SIRT1 as a target for the treatment of metabolic disorders and characterizes the mechanisms underlying the therapeutic potential of SIRT1 activation.


Cell Metabolism | 2010

Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle

Carles Cantó; Lake Q. Jiang; Atul S. Deshmukh; Chikage Mataki; Agnès Coste; Marie Lagouge; Juleen R. Zierath; Johan Auwerx

During fasting and after exercise, skeletal muscle efficiently switches from carbohydrate to lipid as the main energy source to preserve glycogen stores and blood glucose levels for glucose-dependent tissues. Skeletal muscle cells sense this limitation in glucose availability and transform this information into transcriptional and metabolic adaptations. Here we demonstrate that AMPK acts as the prime initial sensor that translates this information into SIRT1-dependent deacetylation of the transcriptional regulators PGC-1alpha and FOXO1, culminating in the transcriptional modulation of mitochondrial and lipid utilization genes. Deficient AMPK activity compromises SIRT1-dependent responses to exercise and fasting, resulting in impaired PGC-1alpha deacetylation and blunted induction of mitochondrial gene expression. Thus, we conclude that AMPK acts as the primordial trigger for fasting- and exercise-induced adaptations in skeletal muscle and that activation of SIRT1 and its downstream signaling pathways are improperly triggered in AMPK-deficient states.


Cell Metabolism | 2012

The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity

Carles Cantó; Riekelt H. Houtkooper; Eija Pirinen; Dou Yeon Youn; Maaike H. Oosterveer; Yana Cen; Pablo J. Fernandez-Marcos; Hiroyasu Yamamoto; Penelope Andreux; Philippe Cettour-Rose; Karl Gademann; Chris Rinsch; Kristina Schoonjans; Anthony A. Sauve; Johan Auwerx

As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.


Cell | 2013

The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling.

Laurent Mouchiroud; Riekelt H. Houtkooper; Norman Moullan; Elena Katsyuba; Dongryeol Ryu; Carles Cantó; Adrienne Mottis; Young-Suk Jo; Mohan Viswanathan; Kristina Schoonjans; Leonard Guarente; Johan Auwerx

NAD(+) is an important cofactor regulating metabolic homeostasis and a rate-limiting substrate for sirtuin deacylases. We show that NAD(+) levels are reduced in aged mice and Caenorhabditis elegans and that decreasing NAD(+) levels results in a further reduction in worm lifespan. Conversely, genetic or pharmacological restoration of NAD(+) prevents age-associated metabolic decline and promotes longevity in worms. These effects are dependent upon the protein deacetylase sir-2.1 and involve the induction of mitonuclear protein imbalance as well as activation of stress signaling via the mitochondrial unfolded protein response (UPR(mt)) and the nuclear translocation and activation of FOXO transcription factor DAF-16. Our data suggest that augmenting mitochondrial stress signaling through the modulation of NAD(+) levels may be a target to improve mitochondrial function and prevent or treat age-associated decline.


Endocrine Reviews | 2010

The Secret Life of NAD(+): An Old Metabolite Controlling New Metabolic Signaling Pathways

Riekelt H. Houtkooper; Carles Cantó; Johan Auwerx

A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In fact, the actions of NAD(+) have been extended from being an oxidoreductase cofactor for single enzymatic activities to acting as substrate for a wide range of proteins. These include NAD(+)-dependent protein deacetylases, poly(ADP-ribose) polymerases, and transcription factors that affect a large array of cellular functions. Through these effects, NAD(+) provides a direct link between the cellular redox status and the control of signaling and transcriptional events. Of particular interest within the metabolic/endocrine arena are the recent results, which indicate that the regulation of these NAD(+)-dependent pathways may have a major contribution to oxidative metabolism and life span extension. In this review, we will provide an integrated view on: 1) the pathways that control NAD(+) production and cycling, as well as its cellular compartmentalization; 2) the signaling and transcriptional pathways controlled by NAD(+); and 3) novel data that show how modulation of NAD(+)-producing and -consuming pathways have a major physiological impact and hold promise for the prevention and treatment of metabolic disease.


Cell Metabolism | 2011

PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation

Péter Bai; Carles Cantó; Hugues Oudart; Attila Brunyanszki; Yana Cen; Charles Thomas; Hiroyasu Yamamoto; Aline Huber; Borbála Kiss; Riekelt H. Houtkooper; Kristina Schoonjans; Valérie Schreiber; Anthony A. Sauve; Josiane Ménissier-de Murcia; Johan Auwerx

SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show that the deletion of the poly(ADP-ribose) polymerase-1 (PARP-1) gene, encoding a major NAD(+)-consuming enzyme, increases NAD(+) content and SIRT1 activity in brown adipose tissue and muscle. PARP-1(-/-) mice phenocopied many aspects of SIRT1 activation, such as a higher mitochondrial content, increased energy expenditure, and protection against metabolic disease. Also, the pharmacologic inhibition of PARP in vitro and in vivo increased NAD(+) content and SIRT1 activity and enhanced oxidative metabolism. These data show how PARP-1 inhibition has strong metabolic implications through the modulation of SIRT1 activity, a property that could be useful in the management not only of metabolic diseases, but also of cancer.


Cell Metabolism | 2015

NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

Carles Cantó; Keir J. Menzies; Johan Auwerx

NAD(+) has emerged as a vital cofactor that can rewire metabolism, activate sirtuins, and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD(+) metabolism revived interest in NAD(+)-boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD(+) metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited.


Trends in Endocrinology and Metabolism | 2009

Caloric restriction, SIRT1 and longevity

Carles Cantó; Johan Auwerx

More than 70 years after its initial report, caloric restriction stands strong as the most consistent non-pharmacological intervention increasing lifespan and protecting against metabolic disease. Among the different mechanisms by which caloric restriction might act, Sir2/SIRT1 (Silent information regulator 2/Silent information regulator T1) has been the focus of much attention because of its ability to integrate sensing of the metabolic status with adaptive transcriptional outputs. This review focuses on gathered evidence suggesting that Sir2/SIRT1 is a key mediator of the beneficial effects of caloric restriction and addresses the main questions that still need to be answered to consolidate this hypothesis.

Collaboration


Dive into the Carles Cantó's collaboration.

Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyasu Yamamoto

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Joanna Ratajczak

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Riekelt H. Houtkooper

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Gumà

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge