Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carles Gaston-Massuet is active.

Publication


Featured researches published by Carles Gaston-Massuet.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans.

Carles Gaston-Massuet; Cynthia L. Andoniadou; Massimo Signore; Sujatha A. Jayakody; Nicoletta Charolidi; Roger Kyeyune; Bertrand Vernay; Ts Jacques; Makoto M. Taketo; Paul Le Tissier; Mehul T. Dattani; Juan Pedro Martinez-Barbera

Wingless (Wnt)/β-catenin signaling plays an essential role during normal development, is a critical regulator of stem cells, and has been associated with cancer in many tissues. Here we demonstrate that genetic expression of a degradation-resistant mutant form of β-catenin in early Rathkes pouch (RP) progenitors leads to pituitary hyperplasia and severe disruption of the pituitary-specific transcription factor 1-lineage differentiation resulting in extreme growth retardation and hypopituitarism. Mutant mice mostly die perinatally, but those that survive weaning develop lethal pituitary tumors, which closely resemble human adamantinomatous craniopharyngioma, an epithelial tumor associated with mutations in the human β-catenin gene. The tumorigenic effect of mutant β-catenin is observed only when expressed in undifferentiated RP progenitors, but tumors do not form when committed or differentiated cells are targeted to express this protein. Analysis of affected pituitaries indicates that expression of mutant β-catenin leads to a significant increase in the total numbers of pituitary progenitor/stem cells as well as in their proliferation potential. Our findings provide insights into the role of the Wnt pathway in normal pituitary development and demonstrate a causative role for mutated β-catenin in an undifferentiated RP progenitor in the genesis of murine and human craniopharyngioma.


Cell Stem Cell | 2013

Sox2+ Stem/Progenitor Cells in the Adult Mouse Pituitary Support Organ Homeostasis and Have Tumor-Inducing Potential

Cynthia L. Andoniadou; Danielle Matsushima; Seyedeh Neda Mousavy Gharavy; Massimo Signore; Albert Ian Mackintosh; Marie Schaeffer; Carles Gaston-Massuet; Patrice Mollard; Ts Jacques; Paul Le Tissier; Mehul Dattani; Larysa Pevny; Juan Pedro Martinez-Barbera

Sox2(+) adult mouse pituitary cells can self-renew and terminally differentiate in vitro, but their physiological role in vivo and possible contribution to oncogenesis remain largely unknown. Using genetic lineage tracing, we show here that the Sox2(+) cell compartment of both the embryonic and adult pituitary contains stem/progenitor cells that are able to differentiate into all hormone-producing lineages and contribute to organ homeostasis during postnatal life. In addition, we show that targeted expression of oncogenic β-catenin in Sox2(+) cells gives rise to pituitary tumors, but, unexpectedly, the tumor mass is not derived from the Sox2(+) mutation-sustaining cells, suggesting a paracrine role of Sox2(+) cells in pituitary oncogenesis. Our data therefore provide in vivo evidence of a role for Sox2(+) stem/progenitor cells in long-term physiological maintenance of the adult pituitary, and highlight an unexpected non-cell-autonomous role for these cells in the induction of pituitary tumors.


Acta Neuropathologica | 2012

Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma

Cynthia L. Andoniadou; Carles Gaston-Massuet; Rukmini Reddy; Ralph P. Schneider; Maria A. Blasco; Paul Le Tissier; Ts Jacques; Larysa Pevny; Mehul T. Dattani; Juan Pedro Martinez-Barbera

Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-catnc) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-catnc cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-catnc cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-catnc cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.


Developmental Cell | 2010

ASPP2 Binds Par-3 and Controls the Polarity and Proliferation of Neural Progenitors during CNS Development

Roberta Sottocornola; Christophe Royer; Virginie Vives; Luca Tordella; Shan Zhong; Yihua Wang; Indrika Ratnayaka; Mark Shipman; Amanda Cheung; Carles Gaston-Massuet; Patrizia Ferretti; Zoltán Molnár; Xin Lu

Cell polarity plays a key role in the development of the central nervous system (CNS). Interestingly, disruption of cell polarity is seen in many cancers. ASPP2 is a haplo-insufficient tumor suppressor and an activator of the p53 family. In this study, we show that ASPP2 controls the polarity and proliferation of neural progenitors in vivo, leading to the formation of neuroblastic rosettes that resemble primitive neuroepithelial tumors. Consistent with its role in cell polarity, ASPP2 influences interkinetic nuclear migration and lamination during CNS development. Mechanistically, ASPP2 maintains the integrity of tight/adherens junctions. ASPP2 binds Par-3 and controls its apical/junctional localization without affecting its expression or Par-3/aPKC lambda binding. The junctional localization of ASPP2 and Par-3 is interdependent, suggesting that they are prime targets for each other. These results identify ASPP2 as a regulator of Par-3, which plays a key role in controlling cell proliferation, polarity, and tissue organization during CNS development.


The Journal of Clinical Endocrinology and Metabolism | 2011

Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction

Mark J. McCabe; Carles Gaston-Massuet; Vaitsa Tziaferi; Louise Gregory; Kyriaki S. Alatzoglou; Massimo Signore; Eduardo Puelles; Dianne Gerrelli; I. Sadaf Farooqi; Jamal Raza; Joanna Walker; Scott I. Kavanaugh; Pei-San Tsai; Nelly Pitteloud; Juan Pedro Martinez-Barbera; Mehul T. Dattani

CONTEXT Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown. OBJECTIVE The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47). METHODS FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects. RESULTS A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathkes pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE. CONCLUSION We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary.


Journal of Clinical Investigation | 2012

SOX2 regulates the hypothalamic-pituitary axis at multiple levels

Sujatha A. Jayakody; Cynthia L. Andoniadou; Carles Gaston-Massuet; Massimo Signore; Anna Cariboni; Pierre Bouloux; Paul Le Tissier; Larysa Pevny; Mehul T. Dattani; Juan Pedro Martinez-Barbera

Sex-determining region Y (SRY) box 2 (SOX2) haploinsufficiency causes a form of hypopituitarism in humans that is characterized by gonadotrophin deficiency known as hypogonadotrophic hypogonadism. Here, we conditionally deleted Sox2 in mice to investigate the pathogenesis of hypogonadotrophic hypogonadism. First, we found that absence of SOX2 in the developing Rathke pouch of conditional embryos led to severe anterior lobe hypoplasia with drastically reduced expression of the pituitary-specific transcription factor POU class 1 homeobox 1 (POU1F1) as well as severe disruption of somatotroph and thyrotroph differentiation. In contrast, corticotrophs, rostral-tip POU1F1-independent thyrotrophs, and, interestingly, lactotrophs and gonadotrophs were less affected. Second, we identified a requirement for SOX2 in normal proliferation of periluminal progenitors; in its absence, insufficient precursors were available to produce all cell lineages of the anterior pituitary. Differentiated cells derived from precursors exiting cell cycle at early stages, including corticotrophs, rostral-tip thyrotrophs, and gonadotrophs, were generated, while hormone-producing cells originating from late-born precursors, such as somatotrophs and POU1F1-dependent thyrotrophs, were severely reduced. Finally, we found that 2 previously characterized patients with SOX2 haploinsufficiency and associated hypogonadotrophic hypogonadism had a measurable response to gonadotropin-releasing hormone (GnRH) stimulation, suggesting that it is not the absence of gonadotroph differentiation, but rather the deficient hypothalamic stimulation of gonadotrophs, that underlies typical hypogonadotrophic hypogonadism.


Development | 2007

Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain

Cynthia L. Andoniadou; Massimo Signore; Ezat Sajedi; Carles Gaston-Massuet; Alan J. Burns; Nobue Itasaki; Mehul T. Dattani; Juan Pedro Martinez-Barbera

The homeobox gene Hesx1 is an essential repressor that is required within the anterior neural plate for normal forebrain development in mouse and humans. Combining genetic cell labelling and marker analyses, we demonstrate that the absence of Hesx1 leads to a posterior transformation of the anterior forebrain (AFB) during mouse development. Our data suggest that the mechanism underlying this transformation is the ectopic activation of Wnt/β-catenin signalling within the Hesx1 expression domain in the AFB. When ectopically expressed in the developing mouse embryo, Hesx1 alone cannot alter the normal fate of posterior neural tissue. However, conditional expression of Hesx1 within the AFB can rescue the forebrain defects observed in the Hesx1 mutants. The results presented here provide new insights into the function of Hesx1 in forebrain formation.


Developmental Biology | 2008

Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development

Carles Gaston-Massuet; Cynthia L. Andoniadou; Massimo Signore; Ezat Sajedi; Sophie Bird; James M. A. Turner; Juan Pedro Martinez-Barbera

Hesx1 has been shown to be essential for normal pituitary development. The homeobox gene Six3 is expressed in the developing pituitary gland during mouse development but its function in this tissue has been precluded by the fact that in the Six3-deficient embryos the pituitary gland is not induced. To gain insights into the function of Six3 during pituitary development we have generated Six3+/- ;Hesx1Cre/+ double heterozygous mice. Strikingly, these mice show marked dwarfism, which is first detectable around weaning, and die by the 5th-6th week of age. Thyroid and gonad development is also impaired in these animals. Analysis of Six3+/- ;Hesx1Cre/+ compound embryos indicates that hypopituitarism is the likely cause of these defects since pituitary development is severely impaired in these mutants. Similar to the Hesx1-deficient embryos, Rathkes pouch is initially expanded in Six3+/- ;Hesx1Cre/+ compound embryos due to an increase in cell proliferation. Subsequently, the anterior pituitary gland appears bifurcated, dysmorphic and occasionally ectopically misplaced in the nasopharyngeal cavity, but cell differentiation is unaffected. Our research has revealed a role for Six3 in normal pituitary development, which has likely been conserved during evolution as SIX3 is also expressed in the pituitary gland of the human embryo.


The Journal of Clinical Endocrinology and Metabolism | 2013

Variations in PROKR2, But Not PROK2, Are Associated With Hypopituitarism and Septo-optic Dysplasia

Mark J. McCabe; Carles Gaston-Massuet; Louise Gregory; Kyriaki S. Alatzoglou; Vaitsa Tziaferi; Oualid Sbai; Philippe Rondard; Koh-hei Masumoto; Mamoru Nagano; Yasufumi Shigeyoshi; Marija Pfeifer; Tony Hulse; Charles Buchanan; Nelly Pitteloud; Juan Pedro Martinez-Barbera; Mehul T. Dattani

Context: Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD). Objective: We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2. Results: We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C—the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2−/− mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2−/− mice. Conclusions: The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate.


Disease Models & Mechanisms | 2008

Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism

Ezat Sajedi; Carles Gaston-Massuet; Massimo Signore; Cynthia L. Andoniadou; Sandra C.P. De Castro; Heather Etchevers; Dianne Gerrelli; Mehul T. Dattani; Juan Pedro Martinez-Barbera

SUMMARY A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1I26T/I26T embryos show pituitary defects comparable with Hesx1−/− mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1R160C/R160C mutants display forebrain and pituitary defects that are identical to those observed in Hesx1−/− null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans.

Collaboration


Dive into the Carles Gaston-Massuet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehul T. Dattani

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Gregory

University College London

View shared research outputs
Top Co-Authors

Avatar

Valeria Scagliotti

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Angelica Gualtieri

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Mark J. McCabe

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Kyriaki S. Alatzoglou

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge