Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyriaki S. Alatzoglou is active.

Publication


Featured researches published by Kyriaki S. Alatzoglou.


Early Human Development | 2009

Genetic forms of hypopituitarism and their manifestation in the neonatal period

Kyriaki S. Alatzoglou; Mehul T. Dattani

The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis. The development of the pituitary gland depends on the sequential temporal and spatial expression of transcription factors and signalling molecules. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3. Mutations in any of the genes involved in pituitary development may result in congenital hypopituitarism, which manifests as the deficiency in one or more pituitary hormones. The phenotype can be highly variable and may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Neonates with congenital hypopituitarism may present with non-specific symptoms, with or without associated developmental defects such as ocular, midline and genital abnormalities. Alternatively, they may be initially asymptomatic but at risk of developing pituitary hormone deficiencies over time. The overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified. Their characterization will further elucidate the pathogenesis of this complex condition and will shed light on normal pituitary development.


The Journal of Clinical Endocrinology and Metabolism | 2009

Expanding the Spectrum of Mutations in GH1 and GHRHR: Genetic Screening in a Large Cohort of Patients with Congenital Isolated Growth Hormone Deficiency

Kyriaki S. Alatzoglou; J.P.G. Turton; Daniel Kelberman; Peter Clayton; Ameeta Mehta; Charles Buchanan; Simon Aylwin; Elisabeth C. Crowne; Henrik Thybo Christesen; Niels Thomas Hertel; Peter J Trainer; Martin O. Savage; Jamal Raza; Kausik Banerjee; Sunil Sinha; Svetlana Ten; Talat Mushtaq; Raja Brauner; Tim Cheetham; Peter C. Hindmarsh; Primus E. Mullis; Mehul T. Dattani

CONTEXT It is estimated that 3-30% of cases with isolated GH deficiency (IGHD) have a genetic etiology, with a number of mutations being reported in GH1 and GHRHR. The aim of our study was to genetically characterize a cohort of patients with congenital IGHD and analyze their characteristics. PATIENTS AND METHODS A total of 224 patients (190 pedigrees) with IGHD and a eutopic posterior pituitary were screened for mutations in GH1 and GHRHR. To explore the possibility of an association of GH1 abnormalities with multiple pituitary hormone deficiencies, we have screened 62 patients with either multiple pituitary hormone deficiencies (42 pedigrees), or IGHD with an ectopic posterior pituitary (21 pedigrees). RESULTS Mutations in GH1 and GHRHR were identified in 41 patients from 21 pedigrees (11.1%), with a higher prevalence in familial cases (38.6%). These included previously described and novel mutations in GH1 (C182X, G120V, R178H, IVS3+4nt, a>t) and GHRHR (W273S, R94L, R162W). Autosomal dominant, type II IGHD was the commonest form (52.4%), followed by type IB (42.8%) and type IA (4.8%). Patients with type II IGHD had highly variable phenotypes. There was no difference in the endocrinology or magnetic resonance imaging appearance between patients with and without mutations, although those with mutations presented with more significant growth failure (height, -4.7 +/- 1.6 SDS vs. -3.4 +/- 1.7 SDS) (P = 0.001). There was no apparent difference between patients with mutations in GH1 and GHRHR. CONCLUSIONS IGHD patients with severe growth failure and a positive family history should be screened for genetic mutations; the evolving endocrinopathy observed in some of these patients suggests the need for long-term follow-up.


The Journal of Clinical Endocrinology and Metabolism | 2011

Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction

Mark J. McCabe; Carles Gaston-Massuet; Vaitsa Tziaferi; Louise Gregory; Kyriaki S. Alatzoglou; Massimo Signore; Eduardo Puelles; Dianne Gerrelli; I. Sadaf Farooqi; Jamal Raza; Joanna Walker; Scott I. Kavanaugh; Pei-San Tsai; Nelly Pitteloud; Juan Pedro Martinez-Barbera; Mehul T. Dattani

CONTEXT Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown. OBJECTIVE The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47). METHODS FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects. RESULTS A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathkes pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE. CONCLUSION We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary.


Best Practice & Research Clinical Endocrinology & Metabolism | 2011

Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond.

Mark J. McCabe; Kyriaki S. Alatzoglou; Mehul T. Dattani

Septo-optic dysplasia (SOD) is a highly heterogeneous condition comprising variable phenotypes including midline and forebrain abnormalities, optic nerve and pituitary hypoplasia. Most instances of SOD are sporadic and several aetiologies including drug and alcohol abuse have been suggested to account for the pathogenesis of the condition. However, a number of familial cases have been described with an increasing number of mutations in developmental transcription factors including HESX1, SOX2, SOX3 and OTX2 being implicated in its aetiology. These factors are essential for normal forebrain/pituitary development, and disruptions to these genes could account for the features observed in SOD and other midline disorders. The variable phenotypes observed within the condition are most likely due to the varying contributions of genetic and environmental factors. This review will discuss the current knowledge about SOD. Further study of these and other novel factors may shed light on the complex aetiology of this condition.


Nature Reviews Endocrinology | 2010

Genetic causes and treatment of isolated growth hormone deficiency-an update.

Kyriaki S. Alatzoglou; Mehul T. Dattani

Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.


Endocrine Reviews | 2014

Isolated Growth Hormone Deficiency (GHD) in Childhood and Adolescence: Recent Advances

Kyriaki S. Alatzoglou; Emma A Webb; Paul Le Tissier; Mehul T. Dattani

The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.


Journal of Endocrinology | 2008

The role of SOX proteins in normal pituitary development

Kyriaki S. Alatzoglou; Mehul T. Dattani

Pituitary development is a complex process that depends on the co-ordinated spatial and temporal expression of transcription factors and signalling molecules that culminates in the formation of a complex organ that secretes six hormones from five different cell types. Given the fact that all distinct hormone producing cells arise from a common ectodermal primordium, the patterning, architecture and plasticity of the gland is impressive. Among the transcription factors involved in the early steps of pituitary organogenesis are SOX2 and SOX3, members of the SOX family that are emerging as key players in many developmental processes. Studies in vitro and in vivo in transgenic animal models have helped to elucidate their expression patterns and roles in the developing hypothalamo-pituitary region. It has been demonstrated that they may be involved in pituitary development either directly, through shaping of Rathkes pouch, or indirectly affecting signalling from the diencephalon. Their role has been further underlined by the pleiotropic effects of their mutations in humans that range from isolated hormone deficiencies to panhypopituitarism and developmental abnormalities affecting many organ systems. However, the exact mechanism of action of SOX proteins, their downstream targets and their interplay within the extensive network that regulates pituitary development is still the subject of a growing number of studies. The elucidation of their role is crucial for the understanding of a number of processes that range from developmental mechanisms to disease phenotypes and tumorigenesis.


The Journal of Clinical Endocrinology and Metabolism | 2013

Variations in PROKR2, But Not PROK2, Are Associated With Hypopituitarism and Septo-optic Dysplasia

Mark J. McCabe; Carles Gaston-Massuet; Louise Gregory; Kyriaki S. Alatzoglou; Vaitsa Tziaferi; Oualid Sbai; Philippe Rondard; Koh-hei Masumoto; Mamoru Nagano; Yasufumi Shigeyoshi; Marija Pfeifer; Tony Hulse; Charles Buchanan; Nelly Pitteloud; Juan Pedro Martinez-Barbera; Mehul T. Dattani

Context: Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD). Objective: We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2. Results: We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C—the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2−/− mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2−/− mice. Conclusions: The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate.


Journal of Endocrinology | 2015

Recent advances in central congenital hypothyroidism

Nadia Schoenmakers; Kyriaki S. Alatzoglou; V Krishna Chatterjee; Mehul T. Dattani

Central congenital hypothyroidism (CCH) may occur in isolation, or more frequently in combination with additional pituitary hormone deficits with or without associated extrapituitary abnormalities. Although uncommon, it may be more prevalent than previously thought, affecting up to 1:16 000 neonates in the Netherlands. Since TSH is not elevated, CCH will evade diagnosis in primary, TSH-based, CH screening programs and delayed detection may result in neurodevelopmental delay due to untreated neonatal hypothyroidism. Alternatively, coexisting growth hormones or ACTH deficiency may pose additional risks, such as life threatening hypoglycaemia. Genetic ascertainment is possible in a minority of cases and reveals mutations in genes controlling the TSH biosynthetic pathway (TSHB, TRHR, IGSF1) in isolated TSH deficiency, or early (HESX1, LHX3, LHX4, SOX3, OTX2) or late (PROP1, POU1F1) pituitary transcription factors in combined hormone deficits. Since TSH cannot be used as an indicator of euthyroidism, adequacy of treatment can be difficult to monitor due to a paucity of alternative biomarkers. This review will summarize the normal physiology of pituitary development and the hypothalamic–pituitary–thyroid axis, then describe known genetic causes of isolated central hypothyroidism and combined pituitary hormone deficits associated with TSH deficiency. Difficulties in diagnosis and management of these conditions will then be discussed.


Human Mutation | 2011

SOX2 haploinsufficiency is associated with slow progressing hypothalamo-pituitary tumours

Kyriaki S. Alatzoglou; Cynthia L. Andoniadou; Daniel Kelberman; Charles Buchanan; John A. Crolla; Maria Cristina Arriazu; Martin Roubicek; Daniel Moncet; Juan Pedro Martinez-Barbera; Mehul T. Dattani

SOX2 is an early developmental transcription factor and marker of stem cells that has recently been implicated in the development of the pituitary gland. Heterozygous SOX2 mutations have been described in patients with hypopituitarism and severe ocular abnormalities. In the majority of published cases, the pituitary gland is either small or normal in size. Here, we report two unrelated patients with SOX2 haploinsufficiency (a heterozygous gene deletion and a novel c.143TC>AA/p.F48X mutation) who developed nonprogressive pituitary tumors of early onset, suggesting a congenital etiology. The truncating mutation resulted in significant loss of function and impaired nuclear localization of the mutant protein, in addition to a failure to repress β‐catenin transcriptional activity in vitro. This is the first indication that SOX2 haploinsufficiency is implicated in the generation of pituitary tumors with distinct clinical characteristics, possibly mediated via its effects on the Wnt signaling pathway. 32:1376–1380, 2011. ©2011 Wiley Periodicals, Inc.

Collaboration


Dive into the Kyriaki S. Alatzoglou's collaboration.

Top Co-Authors

Avatar

Mehul T. Dattani

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Gregory

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. McCabe

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Crolla

Salisbury District Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge