Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carles M. Borrego is active.

Publication


Featured researches published by Carles M. Borrego.


Water Research | 2015

Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river.

Sara Rodriguez-Mozaz; Sara Chamorro; Elisabet Marti; Belinda Huerta; Meritxell Gros; Alexandre Sànchez-Melsió; Carles M. Borrego; Damià Barceló; José Luis Balcázar

Antibiotic resistance has become a major health concern; thus, there is a growing interest in exploring the occurrence of antibiotic resistance genes (ARGs) in the environment as well as the factors that contribute to their emergence. Aquatic ecosystems provide an ideal setting for the acquisition and spread of ARGs due to the continuous pollution by antimicrobial compounds derived from anthropogenic activities. We investigated, therefore, the pollution level of a broad range of antibiotics and ARGs released from hospital and urban wastewaters, their removal through a wastewater treatment plant (WWTP) and their presence in the receiving river. Several antimicrobial compounds were detected in all water samples collected. Among antibiotic families, fluoroquinolones were detected at the highest concentration, especially in hospital effluent samples. Although good removal efficiency by treatment processes was observed for several antimicrobial compounds, most antibiotics were still present in WWTP effluents. The results also revealed that copy numbers of ARGs, such as blaTEM (resistance to β-lactams), qnrS (reduced susceptibility to fluoroquinolones), ermB (resistance to macrolides), sulI (resistance to sulfonamides) and tetW (resistance to tetracyclines), were detected at the highest concentrations in hospital effluent and WWTP influent samples. Although there was a significant reduction in copy numbers of these ARGs in WWTP effluent samples, this reduction was not uniform across analyzed ARGs. Relative concentration of ermB and tetW genes decreased as a result of wastewater treatment, whereas increased in the case of blaTEM, sulI and qnrS genes. The incomplete removal of antibiotics and ARGs in WWTP severely affected the receiving river, where both types of emerging pollutants were found at higher concentration in downstream waters than in samples collected upstream from the discharge point. Taken together, our findings demonstrate a widespread occurrence of antibiotics and ARGs in urban and hospital wastewater and how these effluents, even after treatment, contribute to the spread of these emerging pollutants in the aquatic environment.


Photosynthesis Research | 1994

Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC

Carles M. Borrego; L. J. Garcia-Gil

A reversed-phase High Performance Liquid Cromatography (HPLC) method has been developed to accurately separate bacteriochlorophyllsc, d ande homologues in a reasonably short run time of 60 minutes. By using this method, two well-defined groups of bacteriochlorophyll homologue peaks can be discriminated. The first one consists of 4 peaks (min 24 to 30), which corresponds to the four main farnesyl homologues. The second peak subset is formed by a cluster of up to 10 minor peaks (min 33 to 40). These peaks can be related with series of several alcohol esters of the different chlorosome chlorophylls. The number of homologues was, however, quite variable depending on both, the bacteriochlorophyll and the bacterial species. The method hereby described, also provides a good separation of other photosynthetic pigments, either bacterial (Bacteriochlorophylla, chlorobactene, isorenieratene and okenone) or algal ones (Chlorophylla, Pheophytina and β-carotene). A preliminary screening of the homologue composition of several green photosynthetic bacterial species and isolates, has revealed different relative quantitative patterns. These differences seem to be related to physiological aspects rather than to taxonomic ones. The application of the method to the study of natural populations avoids the typical drawbacks on the pigment identification of overlapping eukaryotic and prokaryotic phototrophic microorganisms, giving further information about their physiological status.


FEMS Microbiology Ecology | 2008

High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study

Marc Llirós; Emilio O. Casamayor; Carles M. Borrego

We surveyed the archaeal assemblage in a stratified sulfurous lake (Lake Vilar, Banyoles, Spain) over 5 consecutive years to detect potential seasonal and interannual trends in the free-living planktonic Archaea composition. The combination of different primer pairs and nested PCR steps revealed an unexpectedly rich archaeal community. Overall, 140 samples were analyzed, yielding 169 different 16S rRNA gene sequences spread over 14 Crenarchaeota (109 sequences) and six Euryarchaeota phylogenetic clusters. Most of the Crenarchaeota (98% of the total crenarchaeotal sequences) affiliated within the Miscellaneous Crenarchaeota Group (MCG) and were related to both marine and freshwater phylotypes. Euryarchaeota mainly grouped within the Deep Hydrothermal Vent Euryarchaeota (DHVE) cluster (80% of the euryarchaeotal sequences) and the remaining 20% distributed into three less abundant taxa, most of them composed of soil and sediment clones. The largest fraction of phylotypes from the two archaeal kingdoms (79% of the Crenarchaeota and 54% of the Euryarchaeota) was retrieved from the anoxic hypolimnion, indicating that these cold and sulfide-rich waters constitute an unexplored source of archaeal richness. The taxon rank-frequency distribution showed two abundant taxa (MCG and DHVE) that persisted in the water column through seasons, plus several rare ones that were only detected occasionally. Differences in richness distribution and seasonality were observed, but no clear correlations were obtained when multivariate statistical analyses were carried out.


Photosynthesis Research | 1995

Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities.

Carles M. Borrego; L. J. Garcia-Gil

The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 μEinstein(E) m−2 s−1 by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 μE m−2 s−1) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days−1 mg prot−1). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e1 and BChl e4, which were tentatively identified as [M, E] and [I, E] BChlFe, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 μE m−2 s−1, whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.


Applied and Environmental Microbiology | 2010

Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo)

Marc Llirós; Frederic Gich; Anna Plasencia; Jean-Christophe Auguet; François Darchambeau; Emilio O. Casamayor; Jean-Pierre Descy; Carles M. Borrego

ABSTRACT Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4′,6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.


Photosynthesis Research | 2002

Determination of the topography and biometry of chlorosomes by atomic force microscopy

Asunción Martínez-Planells; Juan B. Arellano; Carles M. Borrego; Frederic Gich; L. Jesús Garcia-Gil

Isolated chlorosomes of several species of filamentous anoxygenic phototrophic bacteria (FAPB) and green sulfur bacteria (GSB) were examined by atomic force microscopy (AFM) to characterize their topography and biometry. Chlorosomes of Chloroflexusaurantiacus, Chloronema sp., and Chlorobium (Chl.) tepidum exhibited a smooth surface, whereas those of Chl. phaeobacteroides and Chl. vibrioforme showed a rough one. The potential artifactual nature of the two types of surfaces, which may have arisen because of sample manipulation or AFM processing, was ruled out when AFM images and transmission electron micrographs were compared. The difference in surface texture might be associated with the specific lipid and polypeptide composition of the chlorosomal envelope. The study of three-dimensional AFM images also provides information about the size and shape of individual chlorosomes. Chlorosomal volumes ranged from ca. 35 000 nm3 to 247 000 nm3 for Chl. vibrioforme and Chl. phaeobacteroides, respectively. The mean height was about 25 nm for all the species studied, except Chl. vibrioforme, which showed a height of only 14 nm, suggesting that GSB have 1–2 layers of bacteriochlorophyll (BChl) rods and GFB have ∼4. Moreover, the average number of BChl molecules per chlorosome was estimated according to models of BChl rod organisation. These calculations yielded upper limits ranging from 34 000 BChl molecules in Chl. vibrioforme to 240 000 in Chl. phaeobacteroides, values that greatly surpass those conventionally accepted.


Photosynthesis Research | 1999

LIGHT INTENSITY EFFECTS ON PIGMENT COMPOSITION AND ORGANISATION IN THE GREEN SULFUR BACTERIUM CHLOROBIUM TEPIDUM

Carles M. Borrego; Paolo D. Gerola; Mette Miller; Raymond P. Cox

We have investigated the changes in the pigment composition and organisation of the light-harvesting apparatus of the green sulfur bacterium Chlorobium tepidum growing under different light intensities. Cells grown at lower light intensities had lower exponential growth rates and increased amounts of the main light-harvesting pigments, bacteriochlorophyll c and carotenoids, on a cell protein basis. Absorption spectra of chlorosomes isolated from cells grown at low light intensities revealed a red-shift of up to 8 nm in the Qy band of bacteriochlorophyll c compared to chlorosomes from high light grown cells. A similar red-shift of up to 4 nm was also observed in the corresponding fluorescence emission peaks. HPLC analysis of pigment extracts showed a correlation between the red-shift and the content of the more alkylated BChl c homologs, which increased as light intensity for growth was lower. Furthermore, analysis of the carotenoid composition in chlorosomes re vealed a conspicuous change in the ratio between chlorobactene and 1′, 2′-dihydrochlorobactene, which dramatically decreased from 5 to 0.7 in light-limited cultures.


FEMS Microbiology Ecology | 2009

Availability of glucose and light modulates the structure and function of a microbial biofilm.

Irene Ylla; Carles M. Borrego; Anna M. Romaní; Sergi Sabater

We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in beta-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal-bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal-bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.


Frontiers in Microbiology | 2015

The role of biofilms as environmental reservoirs of antibiotic resistance.

José Luis Balcázar; Jèssica Subirats; Carles M. Borrego

Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.


Photosynthesis Research | 1999

THE MOLAR EXTINCTION COEFFICIENT OF BACTERIOCHLOROPHYLL E AND THE PIGMENT STOICHIOMETRY IN CHLOROBIUM PHAEOBACTEROIDES

Carles M. Borrego; Juan B. Arellano; Carles A. Abella; Tomas Gillbro; L. Jesús Garcia-Gil

We have determined the molar extinction coefficient of bacteriochlorophyll (BChl) e, the main light-harvesting pigment from brown-coloured photosynthetic sulfur bacteria. The extinction coefficient was determined using pure [Pr,E]BChl eF isolated by reversed-phase HPLC from crude pigment extracts of Chlorobium (Chl.) phaeobacteroides strain CL1401. The extinction coefficients at the Soret and Qy bands were determined in four organic solvents. The extinction coefficient of BChl e differs from those of other related Chlorobium chlorophylls (BChl c and BChl d) but is similar to that of chlorophyll b. The determined extinction coefficient was used to calculate the stoichiometric BChl e to BChl a and BChl e to carotenoids ratios in whole cells and isolated chlorosomes from Chl. phaeobacteroides strain CL1401 using the spectrum-reconstruction method (SRCM) described by Naqvi et al. (1997) (Spectrochim Acta A Mol Biomol Spectrosc 53: 2229–2234) . In isolated chlorosomes, BChl a content was ca. 1% of the total BChl content and the stoichiometric ratio of BChl e to carotenoids was 6. In whole cells, however, BChl a content was 3–4%, owing to the presence of BChl a-containing elements, i.e. FMO protein and reaction centre. An average of 5 BChl e molecules per carotenoid was determined in whole cells.

Collaboration


Dive into the Carles M. Borrego's collaboration.

Top Co-Authors

Avatar

José Luis Balcázar

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Marc Llirós

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio O. Casamayor

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jèssica Subirats

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge